Найдите a, b, c квадратичной функции y=ax2+bx=c,зная, что этот график пересекает ось oy в точке (0; -5) и имеет ровно одну общую точку (2; 0) с осью ox. постройте этот график(в функции 2-это корень)
Так как график пересекает ось Oy в точке (0;-5) , то -5=a·0²+b·0+c ⇒ c=-5
Парабола у=ax^2+bx-5 имеет одну общую точку (2;0) с осью Ox. 0=a·2²+b·2-5 ⇒ 4a+2b-5=0 и дискриминант квадратного трехчлена ax^2+bx-5 D=b²-4·a·(-5)=b²+20a равен 0 , при выполнении этого условия парабола касается оси ох, т.е имеет с осью Ох только одну общую точку. Из системы двух уравнений: {b²+20a=0 {4a+2b-5=0 ⇒а=(5-2b)/4
чертим систему координат, ставим стрелки в положительных направлениях (вверх и вправо), подписываем оси вправо х, вверх - у, отмечаем начало координат - точку О, отмечаем по каждой оси единичный отрезок в 1 клеточку.
Переходим к графикам: у=√х - кривая, проходящая через начало координат - точку О, заполним таблицу: х= 0 1 4 1/4 у= 0 1 2 1/2 Отмечаем точки на плоскости Проводим линию через начало координат и точки , подписываем график у=√х
у=2-х - прямая, для построения нужны две точки, запишем их в таблицу: х= 0 4 у= 2 -2 Отмечаем точки (0;2) и (4;-2) в системе координат и проводим через них прямую линию. Подписываем график у=2-х
Смотрим на точку пересечения двух данных прямых, отмечаем точку М, ищем её координаты, записываем М(1; 1) Всё!
-5=a·0²+b·0+c ⇒ c=-5
Парабола у=ax^2+bx-5 имеет одну общую точку (2;0) с осью Ox.
0=a·2²+b·2-5 ⇒ 4a+2b-5=0
и дискриминант квадратного трехчлена ax^2+bx-5
D=b²-4·a·(-5)=b²+20a равен 0 , при выполнении этого условия парабола касается оси ох, т.е имеет с осью Ох только одну общую точку.
Из системы двух уравнений:
{b²+20a=0
{4a+2b-5=0 ⇒а=(5-2b)/4
b²+20·(5-2b)/4=0
b²+5·(5-2b)=0
b²-10b+25=0
(b-5)²=0
b=5
a=(5-2b)/4=(5-2·5)/4=-5/4
О т в е т.y= (-5/4)x²+5x-5