I.
1) 18у⁵-12ху²+9у³= 3у²·(6у³-4х+3у)
2) - 14аb³с²-21a²bc²-28a³b²c= -7abc·(2b²c+3ac+4a²b)
II.
1) a(3x-2y)+b(3x-2y) = (3x-2y)·(a+b)
2) (x+3)(2y-1)-(x+3)(3y+2)= (x+3)·(2y-1-3y-2)=(x+3)·(-y-3) = - (x+3)·(y+3)
III.
1) 3x-x²=0
x· (3-x) = 0
x₁ = 0;
3-x = 0 => x₂ = 3
ответ: {0; 3}
2) y²+5y=0
y·(у+5) = 0
у₁ = 0
у+5=0 => y₂ = -5
ответ: {0; -5}
IV.
27³+3⁷ = (3³)³ + 3⁷ = 3⁹ + 3⁷ = 3⁷· (3² + 1) = 3⁷· (9+1) = 3⁷ · 10
Понятие "кратно 10" означает "деление на 10 нацело"
(3⁷·10) : 10 = 3⁷ Доказано!
Количество размещений с повторениями из n по k: А= n^k
--
Первые 3 цифры нечётные и различные (1; 3; 5; 7; 9).
Количество размещений 5 элементов по 3:
A= 5!/(5-3)! = 120/2 = 60
Вторые 3 цифры четные (0; 2; 4; 6; 8).
Количество размещений с повторениями 5 элементов по 3:
B= 5^3 = 125
Количество пар, в которых первый элемент из множества A, a второй элемент из множества B:
C= 60·125 = 7500
Цифра 7 может быть только во множестве A (нечетные, различные).
Количество чисел во множестве A, оканчивающихся на 7, это количество размещений 4 элементов (1; 3; 5; 9) по 2:
A1= 4!/(4-2)! = 24/2 = 12
Цифра 8 может быть только во множестве B (четные, с повторениями).
Количество чисел во множестве B, начинающихся с 8, это количество размещений с повторениями 5 элементов (0; 2; 4; 6; 8) по 2:
B1= 5^2 = 25
Количество пар, в которых первый элемент из множества A1, a второй элемент из множества B1 (т.е. в которых цифры 7 и 8 стоят рядом):
C1= 12·25 = 300
С-С1= 7500-300 = 7200