1.)Предприятие изготовило за квартал 500 насосов, из которых 60% имели высшую категорию качества. Сколько насосов высшей категории качества изготовило предприятие?
Решение:
Найдем 60% от 500 (общее количество насосов).
60 % = 0,6
500 · 0,6 = 300 насосов высшей категории качества.
ответ: 300 насосов высшей категории качества.
2.). За месяц на предприятии изготовили 500 приборов. 20% изготовленных приборов не смогли пройти контроль качества. Сколько приборов не контроль качества? Решение. Нужно найти 20% от общего количества изготовленных приборов 20% = 0,2. 500 * 0,2 = 100. 100 из общего количества изготовленных приборов контроль не Готовясь к экзамену, школьник решил 38 задач из пособия для самоподготовки. Что составляет 23% числа всех задач в пособии. Сколько всего задач собрано в этом пособии для самоподготовки? Решение. Мы не знаем, сколько всего задача в пособии. Но зато нам известно, что 38 задач составляют 25% от общего их количества. Запишем 23% в виде дроби: 0,23. Далее нам следует известную нам часть целого разделить на ту долю, которую она составляет от всего целого: 38/0,25 = 38 * 100/25 = 152. Именно 152 задачи включили в этот сборник. 4.) В классе 30 учеников. 14 из них – девочки. Сколько процентов девочек в классе? Решение. Чтобы узнать, какой процент составляет одно число от другого, нужно то число, которое требуется найти, разделить на общее количество и умножить на 100%. Значит, 14/30*100% = 7/15*100% = 7*100%/15 = 47%.
Требуется получить трехзначное число, записанное тремя одинаковыми цифрами, обозначим цифру, которая повторяется - k, т.о. число будет записываться так kkk Разложив это число на разрядные слагаемые получим сумму: 100 k + 10k + k = 111*k, где k = 1, 2,,9
Последовательный ряд натуральных чисел, начиная с 1 является возрастающей арифметической прогрессией с первым членом а1 = 1 и разностью d = 1 . А найденная сумма 111*k есть Sn - сумма n-первых членов арифметической прогрессии, которые надо сложить, чтобы получить наше трехзначное число. Тогда по формуле суммы n-первых членов арифметической прогрессии Sn = ( 2а1 + (n-1)*d / 2 ) * n
Подставим сюда числовые значения Sn, а1 и d и найдем n :
111*k = ( 2*1 + (n-1)*1 / 2 ) * n 111*k = ( 2 +n-1 / 2 ) * n 111*k = ( 1 +n / 2 ) * n 111*k = n + n^2 / 2 222*k = n + n^2 n^2 + n - 222*k = 0 D = 1 + 4*222*k = 1 + 888*k Т.к. n - натуральное число, то SQRT( D ) должно быть целым, значит число 1 + 888*k должно быть полным квадратом, т.е заканчиваться цифрой 1, 4, 5, 6 или 9. Соответственно 888*k может заканчиваться на 0, 3, 4, 5, 8.
На 3 или 5 888*k не может заканчиваться. Если 888*k заканчивается на 0, то k=5 Если 888*k заканчивается на 4, то k=3 или k=8. Если 888*k заканчивается на 8, то k=1 или k=6.
Т.о. k может быть 1, 3, 5, 6, 8.
Проверим при каком из этих значений 1 + 888*k является квадратом: при k=1 1 + 888*1 = 889 (нет) при k=3 1 + 888*3 = 2665 (нет) при k=5 1 + 888*5 = 4441 (нет) при k=8 1 + 888*8 = 7105 (нет) при k=6 1 + 888*6 = 5329 (да, тогда SQRT( D ) = SQRT( 5329 ) = 73 )
n =( -1 + 73)/2 = 72/2 = 36
ОТВЕТ: нужно сложить 36 последовательных натуральных чисел, начиная с 1, получится число 666.
v=x´(t)=3.3.t²+2.1+0=9t²+2
a=v´(t)=9.2.t+0=18t
a(2)=18.2=36
a(2)=36