Бино́м Нью́то́на — формула для разложения на отдельные слагаемые целой неотрицательной степени суммы двух переменных, имеющая вид
( a + b ) n = ∑ k = 0 n ( n k ) a n − k b k = ( n 0 ) a n + ( n 1 ) a n − 1 b + ⋯ + ( n k ) a n − k b k + ⋯ + ( n n ) b n (a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n - k} b^k = {n\choose 0}a^n + {n\choose 1}a^{n - 1}b + \dots + {n\choose k}a^{n - k}b^k + \dots + {n\choose n}b^n где ( n k ) = n ! k ! ( n − k ) ! = C n k {n\choose k}=\frac{n!}{k!(n - k)!}= C_n^k — биномиальные коэффициенты, n n — неотрицательное целое число.
В таком виде эта формула была известна ещё индийским и персидским математикам; Ньютон вывел формулу бинома Ньютона для более общего случая, когда показатель степени — произвольное действительное (или даже комплексное) число.
Стоимость доставки М = х + п*у, где х - стоимость доставки к дому, у - стоимость доставки на 1 этаж, п - количество этажей Тогда: М₄ = 890 = х + 4у М₇ = 980 = х + 7у решаем систему
х = 980 - 7у - подставляем в 1-е уравнение: 980 - 7у + 4 у = 890 90 = 3у у = 30 тогда х = 980 - у = 980 - 210 = 770
a^2 - a+1-(a+1)= a^2 -a+1-a-1= a^2 -2a
2)x^2 +xy+ y^2 +x^2-xy+y^2=2x^2+2y^2
x^2 +xy +y^2-(x^2 -xy+y^2)=x^2 +xy+ y^2- x^2+xy- y^2=2xy
3)8a+9b-10c+(9a-10b+11c)=8a+9b-10c+9a-10b+11c=17a-b+c
8a+9b-10c-(9a- 10b+11c)=8a+9b-10c-9a+10b-11c= -a +19b-21c