книг 520 к.
полок 9 п.
на каждой кратно 13
доказать есть равное число книг
Решение
Так как по условию на всех полках число книг кратно 13, значит, на каждой оно делится на 13, т.е. , т.е. число книг на каждой n*13, где n - число натурального ряда
520 : 13 = 40 сумма всех коэффициентов при 13 на всех 9 полках
Допустим, что все 9 коэффициентов - разные, начиная с 1 и разница между предыдущим и последующим минимальная - только 1
1 +2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 = 45
45 больше 40 , т.е минимальная сумма разных коэффициентов больше, чем получается по условию. Значит, по крайней мере на двух полках коэффициенты одинаковые, Т.е. на них одинаковое число книг. Что и требовалось доказать.
Подробнее - на -
Для того чтобы найти промежутки возрастания и убывания необходимо взять производна от данной функции и решить следующие неравенстваy' (x) 0 при х удовлетворяющих этому неравенству функция возрастает Найдем y' (x) = (0.5cos (x) - 2) '=-0.5sin (x) Теперь решим неравенство:-0.5sin (x) 0 Это неравенство имеет решения при Значит на этих интервалах функция убывает. Теперь рассмотри неравенство - 0.5sin (x) >0 оно эквивалентно неравенству: sin (x) <0 И имеет следующие решения: Значит на этих интервалах функция возрастает. На границах интервалов функция имеет точку перегиба. ответ: Функция y=0,5cos (x) - 2 возрастает при Убывает при И имеет точки перегиба при
Итак, если L - корень многочлена P(x), то по т. Безу P(x)=(x-L)P₁(x), где P₁(x) - некоторый многочлен. Т.к. В - тоже корень многочлена P(x), то P(B)=(B-L)P₁(B)=0, откуда P₁(B)=0, т.е. B - корень многочлена P₁(x). Значит, опять по т. Безу P₁(х)=(х-В)P₂(x). Таким образом, P(x)=(x-L)P₁(x)=(x-L)(х-В)P₂(x), что и требовалось.