Пусть начальная скорость была x км/ч. Сначала велосипедист проехал 15 км со скоростью x км/ч за 15/x часов. Затем скорость уменьшилась на 3 км/ч, то есть стала x-3 км/ч. Проехал с такой скоростью он 6 км в течение 6/(x-3) часов. В сумме вышло 1.5 часа. Тогда можно составить уравнение: 15/x + 6/(x-3) = 1.5 Умножим обе части на 2x(x-3) 30(x-3) + 12x = 3x(x-3) 10(x-3) + 4x = x(x-3) x^2 - 3x - 10x + 30 - 4x = 0 x^2 - 17x + 30 = 0 (x - 2)(x - 15) = 0 Получим два корня: x1 = 2 км/ч x2 = 15 км/ч Первый корень не подходит, так как величина x1 - 3 км/ч= -1 км/ч < 0. Второй подходит: x2 - 3 км/ч = 12 км/ч ответ: 15 км/ч, 12 км/ч.
Пусть начальная скорость была x км/ч. Сначала велосипедист проехал 15 км со скоростью x км/ч за 15/x часов. Затем скорость уменьшилась на 3 км/ч, то есть стала x-3 км/ч. Проехал с такой скоростью он 6 км в течение 6/(x-3) часов. В сумме вышло 1.5 часа. Тогда можно составить уравнение: 15/x + 6/(x-3) = 1.5 Умножим обе части на 2x(x-3) 30(x-3) + 12x = 3x(x-3) 10(x-3) + 4x = x(x-3) x^2 - 3x - 10x + 30 - 4x = 0 x^2 - 17x + 30 = 0 (x - 2)(x - 15) = 0 Получим два корня: x1 = 2 км/ч x2 = 15 км/ч Первый корень не подходит, так как величина x1 - 3 км/ч= -1 км/ч < 0. Второй подходит: x2 - 3 км/ч = 12 км/ч ответ: 15 км/ч, 12 км/ч.
x1-x2=1
x1x2=1/5
(x1-x2)^2=x1^1+x^2-2x1x2=x1^1+x^2+2x1x2-4x1x2=(x1+x^2)^2-4x1x2
1^2=(p/5)^2-4*1/5
1=p^2/25-4/5
25=p^2-20
p^2=45
p=