X^2+8x+2больше-5 x^2+8x+7больше0 Для нахождения корней данную функцию приравняем к 0 x^2+8x+7=0 D/4=16-7=9 x1=-4+3= -1 x2= -4-3= -7 чертим числовую прямую и отмечаем на ней две точки -1 и -7 этим самым разбиваем числовую прямую на три отрезка(-бесконечность;-7);(-7;-1);(-1;бесконечность). Теперь находим знакопостоянство. Для этого берем любое значение -1 до +бесконечности и подставим в уравнение. Возьмем 0 теперь подставим 0+0+7=7 больше 0 значит положительное значение принимает, теперь берем интервал -7;-1. Возьмем -6, 36-48+7= -5 отрицательное значение и -бесконечность;-7 возьмем -8, 64-64+7=7 положительное. У нас неравенство больше 0, поэтому ищем интервалы с положительным значением, это (-бесконечность;-7)u(-1;бесконечность) То же самое и со вторым значением x^2+8x+2меньше2 x^2+8xменьше0 x^2+8x=0 x(x+8)=0 x1=0 x2= -8 Разбиваем числовую прямую и получаем ответ (-8;0)
Пусть х км/ч - скорость катера, то (х-2) км/ч скорость катера против течения, а (х+2) скорость катера по течению, значит время затраченное по реке: 15/х-2 + 6/х+2, а оно равно времени по озеру: 22/хСоставим уравнение:15/х-2+6/х+2=22/х (каждое слагаемое умножим на "х(х-2)(х+2)15х(х+2)+6х(х-2)=22х^2-8815х^2+30x+6x^2-12x-22x^2+88=0-x^2+18x+88=0x^2-18x-88=0 Д= b^2-4ac= (-18)^2 - 4(1)(-88)= 676x1= -b+-Корень из Дискриминанта / 2а = 18+26/2=22;х2= 18-26/2=-4 Посторонний корень, т.к. скорость не может быть отрицательной.ответ: 22 км/ч
Х (км/ч) - собственная скорость катера х-2 (км/ч) - скорость катера против течения реки х+2 (км/ч) - скорость катера по течению реки 15 (ч) - время движения катера против течения х-2 6 (ч) - время движения катера по течению х+2 22 (ч) - время движения катера по озеру х 15 + 6 = 22 х-2 х+2 х х≠0 х≠2 х≠-2 Общий знаменатель: х(х-2)(х+2) 15х(х+2)+6х(х-2)=22(х-2)(х+2) 15х²+30х+6х²-12х=22(х²-4) 21х²+18х=22х²-88 21х²-22х²+18х+88=0 -х²+18х+88=0 х²-18х-88=0 Д=18²+4*88=324+352=676=26² х₁=18-26 =-4 - не подходит по смыслу задачи 2 х₂=18+26 =22 (км/ч) - собственная скорость катера 2 ответ: 22 км/ч.
x^2+8x+7больше0 Для нахождения корней данную функцию приравняем к 0
x^2+8x+7=0
D/4=16-7=9
x1=-4+3= -1
x2= -4-3= -7
чертим числовую прямую и отмечаем на ней две точки -1 и -7 этим самым разбиваем числовую прямую на три отрезка(-бесконечность;-7);(-7;-1);(-1;бесконечность). Теперь находим знакопостоянство. Для этого берем любое значение -1 до +бесконечности и подставим в уравнение. Возьмем 0 теперь подставим 0+0+7=7 больше 0 значит положительное значение принимает, теперь берем интервал -7;-1. Возьмем -6, 36-48+7= -5 отрицательное значение и -бесконечность;-7 возьмем -8, 64-64+7=7 положительное. У нас неравенство больше 0, поэтому ищем интервалы с положительным значением, это (-бесконечность;-7)u(-1;бесконечность)
То же самое и со вторым значением x^2+8x+2меньше2
x^2+8xменьше0
x^2+8x=0
x(x+8)=0
x1=0
x2= -8
Разбиваем числовую прямую и получаем ответ (-8;0)