Объяснение:
505. 3√a -2√a=(3-2)√a=√a
√с +10√с -14√с=(1+10-14)√c=-3√с
9√6 -2√3 +8√3 -3√6=(9-3)√6-(2-8)√3=6√6 +6√3=6(√(3·2) +√3)=6√3 ·(√2 +1)
507. 2√(4x) +6√(16x) -√(625x)=2·2√x +6·4√x -25√x=(4+24-25)√x=3√x
3√(0,09y) -0,6√(144y) +18/11 √(121/36 ·y)=3√(9/100 ·y) -0,6·12√y +18/11 ·11/6 √y=3·3/10 √y -7,2√y +3√y=(0,9-7,2+3)√y=-3,3√y=-(33√y)/10
510. 4√700 -27√7=4√(7·100) -27√7=4·10√7 -27√7=(40-27)√7=13√7
√75 -6√3=√(25·3) -6√3=5√3 -6√3=(5-6)√3=-√3
2√50 -8√2=2√(25·2) -8√2=2·5√2 -8√2=(10-8)√2=2√2
5√12 -7√3=5√(4·3) -7√3=5·2√3 -7√3=(10-7)√3=3√3
3√72 -4√2 +2√98=3√(36·2) -4√2 +2√(49·2)=3·6√2 -4√2 +2·7√2=(18-4+14)√2=28√2
1/3 √108 +√363 -2/9 √243=1/3 √(36·3) +√(121·3) -2/9 √(81·3)=1/3 ·6√3 +11√3 -2/9 ·9√3=(2+11-2)√3=11√3
1) ac2-ad+c3-cd-bc2+bd= = (ac2 – ad) + (c3 –
bc2) + (bd – cd) = a·(c2 – d) + c2·(c – b) + d·(b – c) = a·(c2 – d) +
c2·(c – b) – d·(c – b) = a·(c2 – d) + c2·(c – b) – d·(c – b) = a·(c2 –
d) + (c – b)·(c2 – d) = (c2 – d)·(a + c – b)
2) mx2+my2-nx2-ny2+n-m= x2 ( m - n ) + y2 ( m - n ) - ( m - n ) = ( m-n ) (x2 + y2 - 1 )
3) am2+cm2-an+an2-cn+cn2= m2 (a + c ) + n2 ( a + c ) - n ( a + c ) = ( a+ c) ( m2 + n2 - n)
4) xy2-ny2-mx+mn+m2x-m2n= y2 ( x - n ) + m2 ( x - n) - m ( x - n ) = ( x-n) ( y2 + m2 - m )
5) a2b+a+ab2+b+2ab+2=ab ( a + b + 2 ) + ( a+ b+ 2 ) = 2 ( a+ b + 2 )
6) x2-xy+x-xy2+y3-y2= x ( x – y + 1) – y 2 ( x – y + 1)=( x – y + 1)( x – y 2 ).
просто подставить:
0.4(-15)-10=-6-10=-16