) 13 + 28х = 5х + 17 + 23х
28х - 5х - 23х = 17 - 13
28х - 28х = 4
0х = 4 - уравнение не имеет корней, так как при любом значении х, 0х = 0
2) 5 - 3х + 4 = 17х + 9 - 20х
- 3х - 17х + 20х = 9 - 5 - 4
- 20х + 20х = 9 - 9
0х = 0
х - любое число (от минус бесконечности до плюс бесконечности)
3) 3/4у + 2у + 5 = 2 3/4у + 4,1 + 0,9
3/4у + 2у - 2 3/4у = 4,1 + 0,9 - 5
2 3/4у - 2 3/4у = 5 - 5
0у = 0
у - любое число (от минус бесконечности до плюс бесконечности)
4) 9 - 16у = 20 - 31у+ 15у
- 16у + 31у - 15у = 20 - 9
0у = 11 - уравнение не имеет корней, так как при любом значении у, 0у = 0
ответ: 1); 4) - не имеют корней; 2); 3) - бесконечное множество корней.
Объяснение:
Вот это правильно
В решении.
Объяснение:
Если ширину прямоугольника уменьшить на 2 см , а длину на 3 см , то получится квадрат , площадь которого на 51 см² меньше площади первоначального прямоугольника. Найдите стороны прямоугольника.
х - ширина первоначального прямоугольника.
у - длина первоначального прямоугольника.
(х - 2) = (у - 3) - длина стороны нового квадрата.
ху - площадь первоначального прямоугольника.
(х - 2)*(у - 3) - площадь нового квадрата.
По условию задачи система уравнений:
(х - 2) = (у - 3)
ху - (х - 2)*(у - 3) = 51
Раскрыть скобки:
х - 2 = у - 3
ху - ху + 3х + 2у - 6 = 51
Привести подобные члены:
х = у - 1
3х + 2у - 6 = 51
Подставить значение х во второе уравнение и вычислить у:
3(у - 1) + 2у - 6 = 51
3у - 3 + 2у - 6 = 51
5у = 51 + 9
5у = 60
у = 60/5
у = 12 (см) - длина первоначального прямоугольника.
х = у - 1
х = 12 - 1
х = 11 (см) - ширина первоначального прямоугольника.
Проверка:
11 * 12 = 132 (см²) - площадь первоначального прямоугольника.
(11 - 2)*(12 - 3) = 9 * 9 = 81 (см²) - площадь нового квадрата.
132 - 81 = 51 (см²), верно.
у=3х+16
-7х-4=3х+16
10х=-20
х=-2
у=-7*(-2)-4=14-4=10