Обозначим cлагаемые за Х,У,Z
(X+Y+Z)/3>=1
Согласно неравенству о среднем арифметическом и среднем геометрическом достаточно доказать :
ХУZ>=1
Вернемся к исходным обозначениям
8abc>=(a+b)(b+c)(a+c)
Снова согласно неравенству о среднем арифметическом и среднем геометрическом видим
a+b>=2sqrt(ab) b+c>=2sqrt(сb) (a+c)>=2sqrt(ac)
поэтому можим заменить сомножители справа на произведение
2sqrt(ab)*2sqrt(aс)*2sqrt(сb)=8abc, что и доказывает неравенство.
Равенство достигается только при а=с=b
ответ: 8.
Первый решение в лоб):
1·2·3·...·37 = 2³⁴·3¹⁷·5⁸·7⁵·11³·13²·17²·19·23·29·31·37 = 2²⁶·3¹⁷·7⁵·11³·13²·17²·19·23·29·31·37·10⁸
На 8 нулей оканчивается т.к. 10⁸. И другие множители не дадут нулей в конце.
Покажу, как разложить на простые множители такое произведение, на примере множителя 2.
От 1 до 37:
36:2=18 чисел кратных 2.
36:4=9 чисел кратных 4.
32:8=4 числа кратных 8.
32:16=2 числа кратных 16.
32:32=1 число кратное 32.
С каждой следующей кратность мы подсчитываем по одной 2 в множителя чисел. Поэтому всего 2 встречается 18+9+4+2+1=34 раза.
Второй проще предыдущего):
Количество нулей числа зависит от того, сколько раз встречается 5 и 2 при разложении этого числа на простые множители т.к. 10=2·5.
Как и в первом подсчитаем, что всего 34 двойки и 8 пятёрок. Значит, можно "составить" не более 8 десяток. И будет 8 нулей в конце.
{ 0,5a + 8 + 0,5b = x
{ a + b = 20
{ 0,5 * (a + b) = x - 8
0,5 * 20 = x - 8
x = 10 + 8
x = 18 (см)
ответ: 18 см