(2+a)x^2+(1-a)x+a+5=0 Рассмотрим несколько ситуаций: 1)если старший коэффициент при x^2=0 ( при а=-2): 0*x^2+3x-2+5=0 3x+3=0 3x=-3 x=-1 Значит, a=-2 нам подходит 2) если средний коэффициент равен нулю ( при а=1): 3x^2+0*x+1+5=0 3x^2+6=0 3x^2=-6 - решений нет, значит а=1 нам не подходит. 3) если а не равно -2 и не равно 1, то перед нами квадратное уравнение, которое имеет хотя бы один корень тогда, когда дискриминант >=нуля: D= (1-a)^2-4(2+a)(a+5)>=0 1-2a+a^2-4(2a+10+a^2+5a)>=0 1-2a+a^2-4(a^2+7a+10)>=0 1-2a+a^2-4a^2-28a-40>=0 -3a^2-30a-39>=0 3a^2+30a+39<=0 | :3 a^2+10a+13<=0 a^2+10a+13=0 D=10^2-4*1*13=48 a1=(-10-4V3)/2=-5-2V3 a2=-5+2V3
Общий член ряда чисел, которые при делении на 5 в остатке 3 р = n*5+3, где n - натуральное число. найдем n, пр котором крайнее число ряда будет еще двузначным 5*n+3< 100 5*n< 97 n< 20 найдем формулу для суммы полученной последовательности чисел при n =1 s = 5*1+3 при n =2 s = 5*1+3 + 5*2+3 при n =3 s = 5*1+3 + 5*2+3 + 5*3+3 = 5*(1+2+3) + 3*3 в скобках получается сумма арифметической прогрессии. в общем случае формула примет вид s = 5*+n)/2)*n) + 3*n для n = 19, при котором числа являются двузначными s = 5*((20/2)*19) + 3*19 = 1007
2)y1= 4\5(дробь) y2=-4\5(дробь)
3)z1=√11 z2=-√11
4)x1=0 x2=3\2(дробь)
5)x1=1\5(дробь) x2 =-1\5(дробь)