данную задачу решим с арифметической прогрессии:
a₁ = 20 мин - продолжительность в первый день
d = 10 мин - ежедневное увеличение
aₙ = 2 часа = 120 мин - n - день в который продолжительность 2 часа
n - ?
Sₙ - ?, мин общее время на воздухе
Найдем на какой по счёту день длительность прогулки достигнет 2 ч:
aₙ = a₁ + (n - 1)*d
120 = 20 + (n - 1)*10
120 = 20 + 10n - 10
120 = 10 + 10n
10n = 110
n = 110:10
n = 11 - день на который продолжительность прогулки достигнет 2 ч.
Найдем сколько всего времени за эти дни ребёнок проведёт на воздухе S₁₁:
a₁₁ = 120 мин
Sₙ = (a₁ + aₙ)/2*n
S₁₁ = (a₁ + a₁₁)/2*n
S₁₁ = (20 + 120)/2*11
S₁₁ = 140/2*11
S₁₁ = 70*11
S₁₁ = 770 мин проведёт ребёнок на улице;
770 мин = 12 часов 50 мин;
ответ: на 11 день длительность прогулки достигнет 2 ч, 12 часов 50 мин ребёнок проведёт на воздухе.
S = ав = 180
Р = 2а + 2в = 54 (т.к. периметр - это сумма длин ВСЕХ сторон).
Таким образом, получаем систему:
ав = 180 ав = 180 (27 - в) * в = 180 (*)
2а + 2в = 54 а + в = 27 (сократили на 2) а = 27 - в
Решаем уравнение (*) отдельно:
(27 - в) * в = 180
-в² + 27в - 180 = 0 (умножаем на -1, чтобы поменять знаки)
в² - 27в + 180 = 0
По теореме Виета:
в₁ * в₂ = 180 в₁ = 12 (см)
в₁ + в₂ = 27 в₂ = 15 (см)
У нас получилось два решения:
а₁ = 27 - в₁ = 27 - 12 = 15 (см)
а₂ = 27 - в₂ = 27 - 15 = 12 (см)
ответ : а₁ = 15 см, в₁ = 12 см либо а₂ = 12 см, в₂ = 15 см.