М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
vikavp2
vikavp2
12.09.2020 19:59 •  Алгебра

2lg(lgx)=lg(3-2lgx) решение желательно более подробно

👇
Ответ:
tiger071
tiger071
12.09.2020
Замени lg(x) = y
получишь
2 lg(y) = lg(3-2y)
или перепишем так
lg(y^2) = lg(3-2y)
откуда следует, что
y^2+2y-3 = 0
решаешь это квадратное уравнение и подставляешь корни в y = lg(x)
 и находишь x
4,6(63 оценок)
Открыть все ответы
Ответ:
yaroslavat05
yaroslavat05
12.09.2020
Прощу прощения за задержку.
Разложить на множители, это означает упростить данное выражение. 
В данном выражении, мы можем увидеть общие множители abc .
Можно конечно разложить так:

abc(27a²bc⁴-36ab³c²) - но как можно заметить, выражение в скобках можно упростить тоже.
Поэтому не имеет смысла несколько раз упрощать и упрощать.
Поступаем так:
Находим минимальную степень а, b и с.
И получаем, что можно упростить так:
a^2b^2c^3(27ac^2-36b^2)
Можем так же заметить что 27 и 36 делятся на 9.
А значит имеем право упростить еще :
(9a^2b^2c^3)(3ac^2-4b^2)
Это и будет окончательный ответ. Мы разложили на множители, и если перемножить скобки, получим начальное выражение :)

Если что то не понятно, задайте вопрос в комментарии :)
4,7(67 оценок)
Ответ:
vasipovismail
vasipovismail
12.09.2020
Пусть количество белых шариков равно Б, черных - Ч. Ясно, что хотя бы одно из этих чисел больше или равно 2, поскольку речь идет о двух одноцветных шариках.  При этом минимальное количество шариков, которые нужно вынуть, чтобы получить 2 одноцветных, равно 3 (первые 2 могут быть разноцветными, третий совпадет с одним из первых двух). С другой стороны, чтобы гарантировано получить 2 разноцветных шарика, нужно взять max(Б,Ч) +1 шарик. Значит, 

max(Б,Ч)+1=3, max(Б,Ч)=2.

Итак, возможны ситуации: Б=2, Ч=1 (симметричная ситуация Ч=2, Б=1), а также Б=Ч=2.  
4,5(73 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ