∀a ∈ ℝ: {a} ∈ [0; 1) ⇒ {x} - 1 ∈ [-1; 0).
∀a ∈ ℝ: [a] ∈ ℤ ⇒ [x] + ... + [x²⁰⁰³] ∈ ℤ.
Но [x] + ... + [x²⁰⁰³] = {x} - 1. Значит, {x} - 1 ∈ ℤ ∩ [-1; 0), то есть {x} - 1 = -1, или {x} = 0 ⇔ x ∈ ℤ.
Теперь переформулируем задачу.
Найдите все целые решения уравнения x²⁰⁰³ + ... + x + 1 = 0.
По следствию из теоремы Безу целые корни многочлена должны являться делителями свободного члена. В нашем случае свободный член - 1. У него два делителя: 1 и -1. Очевидно, что 1²⁰⁰³ + ... + 1 + 1 ≠ 0, а (-1)²⁰⁰³ + ... + (-1) + 1 = 0. Значит, имеем корень, равный -1. Других целых решений, как оговаривалось ранее, нет.
ответ: x = -1.
9x + 8x² = -1
8x² + 9x + 1 = 0
D = 81 - 32 = 49
x1 = (-9+7)/16 = -0,125
x2 = (-9-7)/16= -1
ответ: -1; -0,125
3 + 3x² = 4x
3x² - 4x + 3 = 0
D = 16 - 36 = - 20 => D < 0 => нет корней
ответ: нет корней
25 - 10x + x² =0
D = 100 - 100 = 0
x = 10/2 = 5
ответ: 5
4x - 4x² = 0
x(4 - 4x) = 0
1)x = 0
2)4 - 4x = 0
4x = 4
x = 1
ответ: 0; 1.
3x² - 12 = 0
3x² = 12
x² = 12/3 = 4
x = ±2
ответ: ±2
9x² + 8 = 18x
9x² - 18x + 8 = 0
D = 324 - 288 = 36
x1 = (18+6)/18 = 24/18 = 1 1/3 (одна целая одна третья)
x2 = (18-6)/18 = 12/18 = 2/3
ответ: 2/3; 1 1/3
c² + c = 6
c² + c - 6 = 0
D = 1 + 24 = 25
x1 = (-1+5)/2 = 2
x2 = (-1-5)/2 = -3
ответ: -3; 2