ответ: для начала нам надо найти точки экстремума. для этого найдем производную и приравняем её к 0. получаем -3х^3-2х+5 =0. получаем корни и запоминаем их. далее нам надо найти интеграл от этой производной. поскольку нам крупно повезло мы получаем функцию аналогичную начальной. подставляя числа в промежутке от -5 до 2 получаем такой график функции, при этом, не забываем про производную которую мы находили и проверяем попали ли высоты в значения производной по оси Х, потом подставляем производную в начальное уравнение и получаем значения по У. подставляем эти значения в оси и получаем места перегиба графика. у нас всё получилось
D:xпринадлежит R. y принадлежит R Возьмите производную и приравняйте нулю=>найдете точки, в которых есть экстремум. Если производная меняет знак с + на - ,то это максимум, если с - на +, то минимум. Где + в интервале функция возрастает, где минус - убывает. Ищите вторую производную и приравняйте нулю=> найдете точки перегиба. Если + на интервале a,b, то функция выпуклая вниз, если -, то выпуклая вверх. Если меняется знак, то это точка перегиба. Потом смотрите предел функции при x на беск-ть на наличие верт. ассимпоты, а также посмотрите k и b на наличие наклонной ассимптоты. k=lim(f(x)/x) b=lim(f(x)-kx) где x->беск-ть. А дальше выберайте точки какие-нибудь и стройте в соответствии с тем, что уже нашли.
ответ: для начала нам надо найти точки экстремума. для этого найдем производную и приравняем её к 0. получаем -3х^3-2х+5 =0. получаем корни и запоминаем их. далее нам надо найти интеграл от этой производной. поскольку нам крупно повезло мы получаем функцию аналогичную начальной. подставляя числа в промежутке от -5 до 2 получаем такой график функции, при этом, не забываем про производную которую мы находили и проверяем попали ли высоты в значения производной по оси Х, потом подставляем производную в начальное уравнение и получаем значения по У. подставляем эти значения в оси и получаем места перегиба графика. у нас всё получилось