Согласно теореме Виета, сумма корней квадратного уравнения равна отрицательному коэффициенту b:
x1 + x2 = -b
Произведение корней квадратного уравнения в этой же теореме равно свободному коэффициенту с:
х1 × х2 = с
Доказательство:
Возьмём следующее уравнение:
х² + 6х - 7 = 0
Сначала решим его через дискриминант:
D = b² - 4ac = 36-4×(-7) = 36+28 = 64
x1,2 = (-b±√D)÷2a = (-6±8)÷2
x1 = (-6+8)÷2 = 1
x2 = (-6-8)÷2 = -7
Теперь решим это же уравнение через теорему Виета:
Мы знаем, что:
х1 + х2 = -b
x1 × x2 = c
Осталось лишь подобрать такие корни уравнения, которые бы подходили под эти два равенства. Путём нехитрых вычислений, находим, что этими корнями являются числа -7 и 1:
-7 + 1 = -6 = -b
-7×1 = -7 = c
ответы сходятся, значит наши рассуждения верны.
Это работает со всеми квадратными уравнениями, в которых коэффициент а = 1.
Теорема доказана.
На выполнение заказа потребовалось 7 дней
Объяснение:
Производительность первой бригады составляет 3 единицы в день.
Производительность второй бригады составляет 9 единицы в день.
К концу 4- го дня, объем работы выполненный первой бригадой оценивается в 12 единиц, а второй в 36 единиц. Разница составила 24 единицы.
Начиная с пятого дня, производительность первой бригады составляет уже 10 единиц в день, а второй 2 единицы в день.
С этого момента представим график, где оси X соответствует количество дней, а оси Y объем выполненной работы, начиная с пятого дня. График первой бригады начинается в точке (0;0) и каждое последующее значение у больше значения x в 10 раз. График второй бригады начинается в точке (0;24) и каждое последующее значение у больше значения x в 2 раза.
В виде системы линейных уравнений это будет выглядеть следующим образом:
y=2x+24
y=10x
10x=2x+24
8x=24
x=3
То есть через три дня обе бригады одновременно достигнут равного объема выполненной работы.
Итого: 4+3=7 дней.