Ну во-первых. Это уравнение квадратное на первый взгляд, ведь квадрат же у нас есть. Тем не менее, это неверно. Если коэффициент при x^2 обратится в 0, то уравнение вообще не будет квадратным, оно будет линейным. Поэтому, рассмотрим вначале этот случай. 1)Пусть p - 1 = 0 p = 1 Тогда уравнение обретает вид: -2x + 1 = 0. Уравнение это всегда имеет один корень, поэтому p =1 нам подходит. 2)Пусть p не равен 1. Тогда уравнение будет всегда квадратным. Когда же квадратное уравнение имеет корни? А тогда, когда его дискриминант неотрицателен. D = 4p^2 - 4p(p-1) = 4p^2 - 4p^2 + 4p = 4p Условие задачи будет выполнено, если D >= 0 4p >= 0 p >= 0 - это ответ задачи.
7-6х-3=10
-6х=10-7+3
-6х=6
х=-1
3)
-5х=-2+9-6
-5х=1
х=-1/5
х=-0.2