Сложение рациональных чисел обладает переместительным и сочетательным свойствами. Иными словами, если а , b и c — любые рациональные числа, то а + b = b + а , а + (b + с) = (а + b) + с .
Прибавление нуля не изменяет числа, а сумма противоположных чисел равна нулю. Значит, для любого рационального числа имеем: а + 0 = а , а + (– а) = 0 .
Умножение рациональных чисел обладает переместительным и сочетательным свойствами. Если, а , b и c рациональные числа, то:
ab = ba , a(bc) = (ab)c . Умножение на 1 не изменяет рационального числа, а произведение числа на обратное ему число равно 1 . Значит, для любого рационального числа а имеем:
а • 1 = а ;
Умножение числа на нуль дает в произведении нуль, т. е. для любого рационального числа а имеем:
а • 0 = 0 ; Произведение может быть равно нулю лишь в том случае, когда хотя бы один из множителей равен нулю:
если а • b = 0 , то либо а = 0 , либо b = 0 (может случиться, что и а = 0 , и b = 0 ) . Умножение рациональных чисел обладает и распределительным свойством относительно сложения. Другими словами, для любых рациональных чисел а , b и c имеем:
Решение: В первом банке у вкладчика через год доход составит: 50*25% :100%=12,5 (тыс.руб) Во втором банке сумму дохода с учётом вклада за год можно вычислить по следующему алгоритму: Д+В=В*1,02^12 -где Д- сумма дохода; В-сумма вклада; 1,02=(100% +2%):100% ; 12-число месяцев в году Отсюда: Д+В=50*1,02^12=50*1,26824=63,412(тыс.руб) Д=63,412-50=13,412 (тыс.руб)-доход во втором банке
Следовательно можно сделать вывод, что доход во втором банке будет выше на: 13412 руб- 12500руб=912 руб
ответ: Доход в первом банке-12 500 руб; доход во втором банке - 13 412 руб
а + b = b + а , а + (b + с) = (а + b) + с .
Прибавление нуля не изменяет числа, а сумма противоположных чисел равна нулю. Значит, для любого рационального числа имеем:
а + 0 = а , а + (– а) = 0 .
Умножение рациональных чисел обладает переместительным и сочетательным свойствами. Если, а , b и c рациональные числа, то:
ab = ba , a(bc) = (ab)c .
Умножение на 1 не изменяет рационального числа, а произведение числа на обратное ему число равно 1 . Значит, для любого рационального числа а имеем:
а • 1 = а ;
Умножение числа на нуль дает в произведении нуль, т. е. для любого рационального числа а имеем:
а • 0 = 0 ;
Произведение может быть равно нулю лишь в том случае, когда хотя бы один из множителей равен нулю:
если а • b = 0 , то либо а = 0 , либо b = 0
(может случиться, что и а = 0 , и b = 0 ) .
Умножение рациональных чисел обладает и распределительным свойством относительно сложения. Другими словами, для любых рациональных чисел а , b и c имеем:
(а + b)с = ас + bс.