Нужно использовать следующие свойства числовых неравенств:
1. К обеим частям верного числового неравенства можно прибавить одно и то же число и получится верное числовое неравенство, т.е.:
если а < b и с - любое число, то a + c < b + c.
2. Обе части верного числового неравенства можно умножить (разделить) на одно и то же положительное число, при этом получиться верное числовое неравенство; если же число отрицательное, то знак неравенства изменится на противоположный, т.е.:
если а < b и с > 0, то ac < bc;
если а < b и с < 0, то ac >bc.
Таким образом, если а < b, то: 2,5а < 2,5b (2,5 > 0),
а затем и 2,5а - 7 < 2,5b - 7.
ответ: 2,5а - 7 < 2,5b - 7.
В решении.
Объяснение:
Дана функция у=√х:
а) График которой проходит через точку с координатами А(а; 83). Найдите значение а.
Нужно в уравнение подставить известные значения х и у (координаты точки А):
83 = √а
(83)² = (√а)²
а=6889;
b) Если х∈[0; 36], то какие значения будет принимать данная функция?
у= √х
у=√0=0;
у=√36=6;
При х∈ [0; 36] у∈ [0; 6].
с) y∈ [14; 28]. Найдите значение аргумента.
14 = √х
(14)² = (√х)²
х=196;
28 = √х
(28)² = (√х)²
х=784;
При х∈ [196; 784] y∈ [14; 28].
d) Найдите при каких х выполняется неравенство у ≤ 5.
√х <= 5
(√х)² <= (5)²
х <= 25;
Неравенство у ≤ 5 выполняется при х <= 25.