М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
minion19
minion19
11.11.2020 14:20 •  Алгебра

Решите систему уравнений графическим методом. {3x+y=7, 4x−2y=6.

👇
Ответ:
kiki121
kiki121
11.11.2020
1) Графический метод
    Построим график функции y = 7 - 3x (выразили переменную у из системы уравнения (1)), графиком этой функции является прямая, которая проходит через точки (0;7), (7/3; 0)
  Аналогично строим график функции: y = 2x - 3, прямая, которая проходит через точки (0;-3), (3/2;0)

Построим эти графики.
Графики пересекаются в точке (2;1)

Окончательный ответ: (2;1).

2) Решить систему уравнения методом подстановки.
 {x - y = -3
 { 3x - 3y = -9 |:3
 
   {x - y = -3
   {x - y = -3
Из уравнения (1) выразим переменную y
  y = x + 3, подставляем во (2) уравнение вместо у
x - (x + 3) = -3
x - x - 3 = -3
-3 = -3

ответ: ∀ x.

3) Метод алгебр сложения
 {x = 3 + y
 { 2x - y = 7
 
{x - y = 3 |*(-1)
{ 2x - y = 7

{-x + y = -3
{2x - y = 7
  Сложим уравнения
-x + 2x + y - y = -3 + 7
x = 4
y = -3 + x = -3 + 4 = 1

Окончательный ответ: (4;1).
4,8(9 оценок)
Открыть все ответы
Ответ:

\sin(2x ) < \frac{1}{2}

2x < arcsin( \frac{1}{2} ) \\ 2x < \frac{\pi}{6}

разделим обе стороны на 2 чтоб упростить

x < \frac{\pi}{12}

Функция синуса принимает положительные значения в первом и втором квадрантах. Для определения второго решения вычитаем решение из

π

, чтобы найти решение во втором квадранте.

2x = \pi - \frac{\pi}{6}

x = \frac{5\pi}{12}

Период функции

sin(2х)

равен

π

, то есть значения будут повторяться через каждые

π

радиан в обоих направлениях

x = \frac{\pi}{12} + \pi(n). \frac{5\pi}{12} + \pi(n)

для всех целых n

Выбираем тестовое значение из каждого интервала и подставляем его в начальное неравенство, чтобы определить, какие интервалы удовлетворяют неравенству.

1.

\frac{\pi}{12} < x < \frac{5\pi}{12}

1 это ложно

2.

\frac{5\pi}{12} < x < \frac{13\pi}{12}

2 это истинно

3.

\frac{5\pi}{12} < x < \frac{17\pi}{12}

3 это ложно.

Итак

решение включает все истинные интервалы:

\frac{5\pi}{12} + \pi(n) < x < \frac{13\pi}{12}

для всех целых n

4,7(4 оценок)
Ответ:
ufs09225
ufs09225
11.11.2020

\sin(2x ) < \frac{1}{2}

2x < arcsin( \frac{1}{2} ) \\ 2x < \frac{\pi}{6}

разделим обе стороны на 2 чтоб упростить

x < \frac{\pi}{12}

Функция синуса принимает положительные значения в первом и втором квадрантах. Для определения второго решения вычитаем решение из

π

, чтобы найти решение во втором квадранте.

2x = \pi - \frac{\pi}{6}

x = \frac{5\pi}{12}

Период функции

sin(2х)

равен

π

, то есть значения будут повторяться через каждые

π

радиан в обоих направлениях

x = \frac{\pi}{12} + \pi(n). \frac{5\pi}{12} + \pi(n)

для всех целых n

Выбираем тестовое значение из каждого интервала и подставляем его в начальное неравенство, чтобы определить, какие интервалы удовлетворяют неравенству.

1.

\frac{\pi}{12} < x < \frac{5\pi}{12}

1 это ложно

2.

\frac{5\pi}{12} < x < \frac{13\pi}{12}

2 это истинно

3.

\frac{5\pi}{12} < x < \frac{17\pi}{12}

3 это ложно.

Итак

решение включает все истинные интервалы:

\frac{5\pi}{12} + \pi(n) < x < \frac{13\pi}{12}

для всех целых n

4,7(41 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ