М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Angel1509kl
Angel1509kl
03.09.2020 07:58 •  Алгебра

И! сформулиравать алгоритм умножения многочлен на одночлен

👇
Ответ:
pvpgaydukoxzb3r
pvpgaydukoxzb3r
03.09.2020
Чтобы умножить 2 многочлена надо каждый член первого многочлена умноржить на каждый член второго многочлена
далее полученные произведения сложить и привести подобные
4,7(39 оценок)
Открыть все ответы
Ответ:
hjhytu
hjhytu
03.09.2020

По определению, \left\{\underset{n\rightarrow\infty}{lim}x_n=L\right\}\Leftrightarrow\forall\varepsilon 0 \ \exists N: \ \forall n\geq N\rightarrow\left|x_n-L\right|

Т.к. в обоих случаях нужно обосновать, что L=0, определение преобразуется в утверждение \left\{\underset{n\rightarrow\infty}{lim}x_n=0\right\}\Leftrightarrow\forall\varepsilon 0 \ \exists N: \ \forall n\geq N\rightarrow\left|x_n\right|

2) x_n=\dfrac{a}{n}

|x_n|

А значит, если взять N=\left[\dfrac{|a|}{\varepsilon}\right] +1 (*), \forall\;n\geq N\to |x_n|. И правда: \dfrac{|a|}{\varepsilon}

(*) Очевидно, что для любого допустимого значения \varepsilon выражение \left[\dfrac{|a|}{\varepsilon}\right] +1 определено и конечно, и при этом натуральное число (как сумма неотрицательного целого числа и 1). (*)

А это и означает, что предел данной последовательности равен 0

4)  x_n=\dfrac{2+(-1)^n}{n}

|x_n|

|2+(-1)^n|=\left\{\begin{array}{c}2-1=1,n=2k-1,k\in N \\2+1=3,n=2k,k\in N \end{array}\right. \Rightarrow |2+(-1)^n|\leq 3\; \forall n\in N

А значит, если взять N=\left[\dfrac{3}{\varepsilon}\right] +1 (**), \forall\;n\geq N\to |x_n|. И правда: \dfrac{|2+(-1)^n|}{\varepsilon}\leq\dfrac{3}{\varepsilon}< \left[\dfrac{3}{\varepsilon}\right] +1=N\leq n \Rightarrow \dfrac{|2+(-1)^n|}{\varepsilon}< n \Rightarrow |x_n|

(**) Очевидно, что для любого допустимого значения \varepsilon выражение \left[\dfrac{3}{\varepsilon}\right] +1 определено и конечно, и при этом натуральное число (как сумма неотрицательного целого числа и 1). (**)

А это и означает, что предел данной последовательности равен 0

___________________________

2) a=1. Тогда x_1=\dfrac{1}{1}=1; x_2=\dfrac{1}{2}; x_3=\dfrac{1}{3}; x_4=\dfrac{1}{4}; x_5=\dfrac{1}{5}; x_6=\dfrac{1}{6}

4)

x_1=\dfrac{2+(-1)^1}{1}=1;\;x_2=\dfrac{2+(-1)^2}{2}=1\dfrac{1}{2};\;x_3=\dfrac{2+(-1)^3}{3}=\dfrac{1}{3};\;x_4=\dfrac{2+(-1)^4}{4}=\dfrac{3}{4};\;x_5=\dfrac{2+(-1)^5}{5}=\dfrac{1}{5};\;x_6=\dfrac{2+(-1)^6}{6}=\dfrac{1}{2}.

___________________________

Обозначения и некоторые св-ва: {x} - дробная часть числа x, [x] - целая часть числа x. 0\leq \{x\}


пример 2 и 4. Все теоремы и аксиомы, будьте добры, распишите. Действий, пусть и банальных, легких не
4,6(34 оценок)
Ответ:
vladiktikhonov2
vladiktikhonov2
03.09.2020
Удобнее всего решать эту задачу, используя единицы измерения скорости – км/мин. А в конце все полученные результаты перевести в км/ч.

Пусть скорость медленного гонщика составляет    x    км/мин.

Раз быстрый гонщик обогнал впервые медленного через 48 минут, то с таким же успехом, мы можем переформулировать это утверждение и так: быстрый гонщик через 48 минут опережал медленного на 8 км (длину одного круга). А значит, их относительная скорость удаления составляет:    8 : 48 = 1/6    км/мин.

Из найденного следует, что скорость быстрого гонщика мы можем записать, как:    ( x + 1/6 )    км/мин.

Сказано, что медленный гонщик ехал на 17 минут дольше, а значит, если мы вычтем из времени в пути медленного гонщика время в пути быстрого гонщика, то эта разность и должна составить 17 минут. Ясно, что время в пути для каждого гонщика мы можем найти, разделив полный путь трассы на скорость каждого из них, тогда:

\frac{ 85 \cdot 8 }{x} - \frac{ 85 \cdot 8 }{ x + 1/6 } = 17 \ ;

\frac{ 85 \cdot 8 }{x} - \frac{ 85 \cdot 8 }{ x + 1/6 } = 17 \ ; \ \ \ || : 17

\frac{ 5 \cdot 8 }{x} - \frac{ 5 \cdot 8 }{ x + 1/6 } = 1 \ ;

\frac{ 5 \cdot 8 }{x} - \frac{ 5 \cdot 8 }{ x + 1/6 } = 1 \ ; \ \ \ || : 40

\frac{1}{x} - \frac{1}{ x + 1/6 } = \frac{1}{40} \ ;

\frac{ x + 1/6 }{ x ( x + 1/6 ) } - \frac{x}{ x ( x + 1/6 ) } = \frac{1}{40} \ ;

\frac{ ( x + 1/6 ) - x }{ x^2 + x/6 } = \frac{1}{40} \ ;

\frac{ x + 1/6 - x }{ x^2 + x/6 } = \frac{1}{40} \ ; \ \ \ || \cdot ( x^2 + x/6 )

\frac{1}{6} = \frac{ x^2 + x/6 }{40} \ ;

\frac{1}{6} = \frac{ x^2 + x/6 }{40} \ ; \ \ \ || \cdot 120

20 = 3 \cdot ( x^2 + x/6 ) \ ;

20 = 3 \cdot ( x^2 + x/6 ) \ ; \ \ \ || \cdot 2

40 = 6x^2 + x \ ;

6x^2 + x - 40 = 0 \ ;

D = 1^2 - 4 \cdot 6 \cdot (-40) = 1 + 24 \cdot 40 = 1 + 960 = 900 + 61 = 30^2 + 30 + 31 = 31^2 \ ;

x \in \frac{ -1 \pm 31 }{ 2 \cdot 6 } \ ;

Поскольку    x 0 \ ,    так, как это скорость,
направленная в заданную сторону (вперёд), то:

x = \frac{ -1 + 31 }{ 2 \cdot 6 } = \frac{30}{ 2 \cdot 6 } = \frac{15}{6} \ ;

Это и есть скорость второго (медленного) гонщика.
Осталось только перевести её в км/ч:

15/6 км/мин = 15 км : 6 мин = 150 км : 60 мин = 150 км : час = 150 км/час.

О т в е т : 150 км.
4,8(74 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ