Геометрическая прогрессия Последовательность чисел {an} называется геометрической прогрессией, если отношение последующего члена к предыдущему равно одному и тому же постоянному числу q, называемому знаменателем геометрической прогрессии. Таким образом, для всех членов геометрической прогрессии. Предполагается, что q ≠ 0 и q ≠ 1.
Любой член геометрической прогрессии можно вычислить по формуле:
Сумма первых n членов геометрической прогрессии определяется выражением
Говорят, что бесконечная геометрическая прогрессия сходится, если предел существует и конечен. В противном случае прогрессия расходится.
Пусть представляет собой бесконечный ряд геометрической прогрессии. Данный ряд сходится к, если знаменатель |q| < 1, и расходится, если знаменатель |q| > 1.
Пример 1 Найти сумму первых 8 членов геометрической прогрессии 3, 6, 12, ..
Решение. Здесь a1 = 3 и q = 2. Для n = 8 получаем
Пример 2 Найти сумму ряда .
Решение. Данный ряд является бесконечной геометрической прогрессией со знаменателем q = − 0,37. Следовательно, прогрессия сходится и ее сумма равна
Пример 3 Найти сумму ряда
Решение. Здесь мы имеем дело с конечной геометрической прогрессией, знаменатель которой равен . Поскольку сумма геометрической прогрессии выражается формулой
то получаем следующий результат:
Пример 4 Выразить бесконечную периодическую дробь 0,131313... рациональным числом.
Решение. Запишем периодическую дробь в следующем виде:
Используя формулу суммы бесконечно убывающей геометрической прогрессии со знаменателем, получаем
Пример 5 Показать, что
при условии x > 1.
Решение. Очевидно, что если x > 1, то . Тогда левая часть в заданном выражении представляет собой сумму бесконечно убывающей геометрической прогрессии. Используя формулу, левую часть можно записать в виде
что доказывает исходное соотношение.
Пример 6 Решить уравнение
Решение. Запишем левую часть уравнения в виде суммы бесконечно убывающей геометрической прогрессии:
Тогда уравнение принимает вид
Находим корни квадратного уравнения:
Поскольку |x| < 1, то решением будет .
Пример 7 Известно, что второй член бесконечно убывающей геометрической прогрессии (|q| < 1) равен 21, а сумма равна 112. Найти первый член и знаменатель прогрессии.
1) Просто вместо x подставь число 4 и посчитай у. Значение у - и будет значением функции. y=0.5*4-1=1 2) Вместо у подставь (-8) и реши уравнение. Значение х - значение аргумента. -8=0.5х-1 0.5х=-7 х=-14 3) (1)При пересечении с осью абсцисс (горизонтальная ось) у=0, следовательно в формулу вместо у подставляешь 0 и находишь х. 0=0.5х-1 х=2 Значит (2;0) - координаты пересечения графика с осью абсцисс. (2)При пересечении с осью ординат (вертикальная ось) х=0, следовательно в формулу вместо х подставляешь 0 и находишь у. у=0.5*0-1 у=-1 Значит (0;-1) - координаты пересечения графика с осью ординат.
h=
2
2h=gl²
2h
= l²
g
l=√(2h/g)