В решении.
Объяснение:
1) Коэффициент одночлена - это дробь перед переменными, в данном случае 3/7, а степень одночлена - это сумма степеней переменных, в данном примере 5+2, значит, 7.
Определить коэффициент и степень одночлена:
3/7 х⁵у² = 3/7 и 7.
2) 3ху²+8х-7у+4ху²+2ху²+3х=
=9ху²+11х-7у.
3) аz²+bz²-bz-az+a+b=
=(аz²+bz²)-(bz+az)+(a+b)=
=z²(a+b)-z(a+b)+(a+b)=
=(a+b)(z²-z+1).
4) 3,4*10⁹ * 1200=
=3,4*10⁹ * 1,2*10³=
=3,4*1,2*10¹²=
=4,08 * 10¹².
5) Вычислить:
(1/3)⁻¹ - (-6/7)⁰ + (1/2)² : 2=
=1 : (1/3) - 1 + 1/4 : 2=
=3 - 1 + 1/8=
=2 + 1/8= 2 и 1/8.
6) В 4 раза.
Р=4а
S=а²
Если S=16а², а=4а, Р=4*4а=16а
16а:4а=4 (раза).
Координаты точки пересечения прямых (3,7; -1,3)
Решение системы уравнений (3,7; -1,3)
Объяснение:
Решить систему уравнение графическим
х-у=5
х+2у=1
Построить графики. Графики линейной функции, прямые линии. Придаём значения х, подставляем в уравнение, вычисляем у, записываем в таблицу. Для построения прямой достаточно двух точек, для точности построения определим три.
Прежде преобразуем уравнения в более удобный для вычислений вид:
х-у=5 х+2у=1
-у=5-х 2у=1-х
у=х-5 у=(1-х)/2
Таблицы:
х -1 0 1 х -1 1 3
у -6 -5 -4 у 1 0 -1
Согласно графика, координаты точки пересечения прямых (3,7; -1,3)
Решение системы уравнений (3,7; -1,3)
-2у+у=-2
у=2
х=3-2=1