и
– среднеарифметическое равно
и при этом
на
меньше двадцати пяти и на
больше семнадцати.
монет и у них становится поровну, то они как раз и приходят к среднеарифметическому их начальных количеств монет. В итоге у Васи оказывается на
монет меньше изначального, а у Пети на
монет больше изначального. А значит, вначале у Васи было на
монет больше, чем у Пети.
монет. Тогда у Пети
монет.
монет, а у Пети-II будет
монет. При этом у Пети-II монет в
раз меньше, т.е. если мы количество монет Пети-II мысленно увеличим в
раз, то их станет столько же, сколько и у Васи-II. На этом основании составим уравнение:



было целым, целой должен быть и результат деления в дроби, а чтобы
было максимальным, частное от деления в дроби должно быть максимальным, а значит её знаменатель должен быть минимальным, целым, положительным числом, что возможно только, когда
откуда:




было целым, целой должен быть и результат деления в дроби. А максимальное значение знаменателя в такой дроби (при том, что частное от деления остаётся целым) составляет
откуда:
Арифметический квадратный корень из некоторого числа - это неотрицательное число, квадрат которого равен некоторому числу.
Обозначается: √а. Т.е. √а = b, причем b ≥ 0 и b² = a.
Например, √4 = 2, т.к. 2² = 2 и 2 ≥ 0.
Тогда:
√а = 3, значит, а = 9, т.к. 3² = 9;
√а = 10, значит, а = 100, т.к. 10² = 100;
√а = 0, значит, а = 0, т.к. 0² = 0;
√а = 0,8, значит, а = 0,64, т.к. 0,8² = 0,64;
√а = 1/4, значит, а = 1/16, т.к. (1/4)² = 1/16;
√а = 0,1, значит, а = 0,01, т.к. 0,1² = 0,01;
√а = 1 целая 2/3 = 5/3, значит, а = 25/9 = 2 целых 7/9, т.к. (5/3)² = 25/9;
√а = 1,1, значит, а = 1,21, т.к. 1,1² = 1,21.