М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
theslomsmon
theslomsmon
14.02.2023 03:58 •  Алгебра

Arccos (-√2/2) - arctg 1 + arcsin 0 = ?

👇
Ответ:
lokotkovasveta
lokotkovasveta
14.02.2023
135° - 45° + 0 = 90°
4,7(32 оценок)
Открыть все ответы
Ответ:
Nastya171167
Nastya171167
14.02.2023

Объяснение:

2.

a) 3x+12>4x-1    |  (-x>-13) /-1  |  x<13      

   7-2x<=10-3x  | -3 <= -x /-1  |  x <= 13.    x принадлежит (-∞; 13].

б) 2x-9 > 6x+1                             |  (-4x > 10) / -4  |     x<10

  ( -\frac{x}{2} < 2 ) *-2 |  x > 4.      x принадлежит (-∞; 10) и (4; +∞).

3.

а) \sqrt{8x+32} \geq 0 Взводим все в квадрат

  8x+32 => 0

8x => 32 делим все на 8

x => 4.    x принадлежит [4; +∞).

б) \sqrt{3-x} - \sqrt{2x+1} \geq 0 Взводим все в квадрат

3-x-2x+1 => 0

4 => 3x Делим все на 3

1.3 => x

x <= 1.3.     x принадлежит [-∞; 1.3).

4.

а-7 => 0     3-2a => 0

a => 7         3 => 2a

                  1.5 => a                 ответ: a принадлежит  [7; +∞).

4,4(75 оценок)
Ответ:
Egorjava
Egorjava
14.02.2023

Объяснение:

В основе метода математической индукции (ММИ) лежит принцип математической индукции: утверждение $P(n)$ (где $n$ - натуральное число) справедливо при $\forall n \in N$, если:

Утверждение $P(n)$ справедливо при $n=1$.

Для $\forall k \in N$ из справедливости $P(k)$ следует справедливость $P(k+1)$.

Доказательство с метода математической индукции проводится в два этапа:

База индукции (базис индукции). Проверяется истинность утверждения при $n=1$ (или любом другом подходящем значении $n$)

Индуктивный переход (шаг индукции). Считая, что справедливо утверждение $P(k)$ при $n=k$, проверяется истинность утверждения $P(k+1)$ при $n=k+1$.

Метод математической индукции применяется в разных типах задач:

Доказательство делимости и кратности

Доказательство равенств и тождеств

Задачи с последовательностями

Доказательство неравенств

Нахождение суммы и произведения

4,8(50 оценок)
Это интересно:
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ