М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Вовчики
Вовчики
24.02.2021 01:16 •  Алгебра

Представте в виде оночлена стандартного вида и нйите его степень: а) -y2*40z*(-0,25)z3y )*(-12,5b)(c5)3

👇
Ответ:
megastas777
megastas777
24.02.2021
-y² *40z *(-0.25)z³ y=10y³z³

(-8b³)( -12.5b)(c^5)³=100b^4 c^15
4,4(24 оценок)
Открыть все ответы
Ответ:
khadija7
khadija7
24.02.2021
№1. Делаю только «а», «б» делаете по аналогии.
а) Предположим, что графики функций y = x^2 и y = 4. Чтобы найти координату x точек пересечения приравняем две функции (они пересекаются, значит приравниваем). Получаем:
x^2 = 4 \\ 
x = \pm 2
y можем найти подставив x в выражение первой функции y = x^2, а можно сделать проще. Так как пересечение будет с прямой y = 4, то и точки пересечения будут иметь координату y = 4. Итак, получилось две точки пересечения с координатами: (2;4),(-2;4).
Покажем теперь то же на графике. Смотрите рисунок, приложенный к ответу.
№2.
а) Дан отрезок [0;1] (этот отрезок по оси x), найдем значения y на концах этого отрезка:
y_0 = f(0) = 0^2 = 0 \\ 
y_1 = f(1) = 1^2 = 1
Имеем, что первое — наименьшее значение функции на заданном отрезке, а второе — наибольшее.
б) Делаем ту же работу:
y_{(-3)} = f(-3) = (-3)^2 = 9 \\ 
y_0 = f(0) = 0^2 = 0
Видим, что первое — наибольшее значение функции на заданном промежутке, а второе — наименьшее.

№1. найдите точки пересечения прямой и параболы: а) y=x^2(x в квадрате) и y=4 б) y= -x^2(x в квадрат
4,7(70 оценок)
Ответ:
varvaralikhtsr
varvaralikhtsr
24.02.2021

По всей видимости, речь идёт о функции у=-5/(1+х^2)

Если это так, то обратим внимание на то, что знаменатель всегда положителен, поэтому значение функции всегда отрицательное.

Далее, вообще верхний предел этой функции равен 0, при х-> +-бесконечности, поэтому максимальное ЦЕЛОЕ значение, которое может принять функция, равно -1.

 

Вот в принципе и всё, однако для строгости нужно ещё доказать, что она где-то примет это значение. Это просто, так как мин. значение функции -5 , это очевидно, если глянуть на знаменатель. Поэтому область значений функции [-5;0). -1 входит в этот интервал. Всё.

 

Ну и последнее. В задаче НЕ ТРЕБУЕТСЯ определить при каком значении х достигается указанный максимум и в общем случае это бывает очень трудно, даже невозможно аналитическими методами сделать. У нас же очень простая функция, поэтому в качестве бонуса определим этот х.

-5/(1+х^2)=-1

x^2 = 4,   x=+-2

То есть указанного целочисленного максимума функция принимает даже при двух разных  значениях аргумента(хотя это было ясно с самого начала, так как функция чётная).

Вот теперь точно всё. 

4,5(78 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ