-х2+6х-4| ;(-1)
x2-6x+4=0
d=6*6-4*4=36-16=20
х1=(6+ корень из 20)/2=(6+2* корень из 5)/2=3+ корень из 5
х2=(6-корень из 20 )/2=3- корень из 5
х2-6х+4=(х-(3- корень из 5))(х- (3 +корень из 5))
ответ :3+ корень из 5
а вот еще
С производной:
y ' = -2x + 6 = 0, x = 3, y(3) = -9 + 18 - 4 = 5
Без производной:
Так как коэффициент при x^2 отрицателен, то ее ветви направлены вниз.
Точка максимума находится в вершине параболы.
Вершина параболы имеет координаты: x = -b / 2a = -6 / (2*(-1)) = (-6) / (-2) = 3, y(3) = -9 + 18 - 4 = 5
х² - 2х - 3 = 0.
Решаем уравнение x²-2x-3=0:
Квадратное уравнение, решаем относительно x: Ищем дискриминант:
D=(-2)^2-4*1*(-3)=4-4*(-3)=4-(-4*3)=4-(-12)=4+12=16;Дискриминант больше 0, уравнение имеет 2 корня:
x₁=(√16-(-2))/(2*1)=(4-(-2))/2=(4+2)/2=6/2=3; у = 3² = 9.x₂=(-√16-(-2))/(2*1)=(-4-(-2))/2=(-4+2)/2=-2/2=-1; у = (-1)² = 1.
ответ: 2 точки (-1; 1) и (3; 9).