При х=3
Объяснение:
Определим, при каком значении х функция у = 4 * х - 1 принимает значение равное 11
Так как, y = 11, то подставим данное значение в функцию у = 4 * х - 1, и составим уравнение. То получаем уравнение в виде:
4 * x - 1 = 11;
Приведем уравнение к линейному виду и получим:
4 * x - 1 - 11 = 0;
4 * x - (1 + 11) = 0;
4 * x - 12 = 0;
Получили линейное уравнение в виде 4 * x - 12 = 0
Для того, чтобы решить уравнение, определим какие свойства имеет уравнение:
Уравнение является линейным, и записывается в виде a * x + b = 0, где a и b - любые числа;
При a = b = 0, уравнение имеет бесконечное множество решений;
Если a = 0, b ≠ 0, уравнение не имеет решения;
Если a ≠ 0, b = 0, уравнение имеет решение: x = 0;
Если, а и b - любые числа, кроме 0, то корень находится по следующей формуле x = - b/a.
Отсюда получаем, что a = 4, b = - 12, значит, уравнение имеет один корень.
x = - (- 12)/4;
x = 12/4;
x = 3 * 4/4;
Дробь 3 * 4/4 сокращаем на 4, тогда получим:
х = 3 * 1/1;
x = 3;
Получаем, что при х = 3 функция у = 4 * х - 1 принимает значение равное 11.
Берешь это в табличку : y| 1 | 3 | x| 2 | 3 | Если y = 1, то x = 2; если y = 3, то x = 3. Делала так: Подбирала любое значение y и находила значение x, как в любом уравнении. На примере первого : 1=2x-3; x=2. Во втором так же. Далее на координатной плоскости отмечаем точки с координаты и, полученными ранее. Например точка K ( 2;1) и точка L (3;3). Обратите внимание, что в ответе координаты точки А мы пишем именно в таком порядке, т.к. На первом месте значение х, а на втором у. Когда вы отметили точки, вы вполне можете провести через них прямую, сделайте это. И лучше провести ее через всю плоскость, а не от точки до точки. Удачи!