существует два перевода из периодической дроби в обыкновенную:
1) надо из числа, стоящего до второго периода, вычесть число, стоящее до первого периода и записать эту разность в числитель, а в знаменателе написать цифру 9 столько раз, сколько цифр в периоде, и после девяток дописать
столько нулей, скока цифр между запятой и первым периодом: 0,11(6)
116-11 105 7
0,11(6)===
900 900 60
235-2 233
0.2(35)= =
990 990
2)
а)Найдем период дроби, т.е. подсчитаем, сколько цифр находится в периодической части. К примеру, это будет число k.
б)Найдем значение выражения X · 10k
в)Из полученного числа надо вычесть исходное выражение. При этом периодическая часть «сжигается», и остается обычная дробь.
г)В полученном уравнении найти X. Все десятичные дроби переводим в обыкновенные.
0,11(6)=Х
k=1
10^(k)=1
тогда x*10=10*0,116666...=1,166666...
10X-X=1,166666...-0,116666...=1,16-0,11=1,05
9X=1,05
105 7
X==
900 60
0.2(35):
k=2
10^k=100
100X=0.2353535...*100=23,535353
100X-X=23,535353-0.2353535=23,3
99x=23,3
233
x=
900
* * * четная функция , y =(x² -1)² +2⇒ y min = 2 , если x ²-1 =0 ⇒ x= ±1 * * *
y ' =4x³ - 4x =4x(x²-1) =4x(x + 1)(x - 1) ;
- + - +
[-1] 0 [1]
y(-1) = (-1)⁴ -2*(-1)² +3 =2 ;
y(0) = 0⁴ -2*0² +3 =3
y(1) = 1⁴ -2*1² +3 =2.
y(-3) = (-3)⁴ -2*(-3)² +3 =66 ;
y(2) = 2⁴ - 2*2² +3 = 11 ;
ymin =2 , y max = 66 .