1. Пусть с помидорами было х банок, тогда с огурцами - 2х банок (2х-4):(х-6)=3:1 Применяем основное свойство пропорции: произведение крайних членов равно произведению средних. 2х-4=3(х-6) 2х-4=3х-18 2х-3х=4-18 -х=-14 х=14 ответ. 14 банок с помидорами и 28 банок с огурцами было.
2.Пусть х людей было на регистрации и у машин Предложение "если в каждую машину сядет по три гостя, то двоим не хватит места" дает возможность составить первое уравнение: 3у+2=х Предложение "если по четыре, то три места останутся свободными" дает возможность составить второе уравнение: 4у-3=х получаем систему
Ιx-1Ι+Ιx+3Ι=6,2 Находим точки, в которых модули превращаются в ноль: х-1=0 х=1 х+3=0 х=-3. Обе точки разделяют действительную ось на интервалы: (-∞;-3)∨(1;+∞). Обозначаем знаки подмодульных функций на найденных интервалах (знаки устанавливаем простой подстановкой точек из интервала: (-∞;-3) - - (-3;1) - + (1;+∞) + + Раскрываем модули, учитывая знаки и находим решение: -х+1-х-3=6,2 -2х=8,2 х=-4,1 -х+1+х+3=6,2 х∉ (нет решения) х-1+х+3=6,2 2х=4,2 х=2,1 ответ: х₁=-4,1 х₂=2,1.
√-х>0
-х=0
х=0
(-беск. ; 0]