М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
саид126
саид126
30.01.2020 12:33 •  Алгебра

Найдите сумму наибольшего наименьшего значений функций y=12sinx-5cosx ,)

👇
Ответ:
Murv847
Murv847
30.01.2020
Найдите сумму наибольшего наименьшего значений функций
y=12sinx-5cosx

метод дополнительного угла :
y=12sinx-5cosx  =  13 ( ( 12/13)* sinx - (5/13)*cosx ) =13sin(x -arctq(5/12) )
y max =  13 ;  y min = -13.

* * *13 =√(12²+ (-5²))  ;   sinα =5/13  ; cosα  =12/13⇒tqα = 5/12  * * *
4,6(57 оценок)
Открыть все ответы
Ответ:
виктория907
виктория907
30.01.2020

Попробуем догадаться об окончании условия неравенства. Упростим сначала левую часть:

Разложим квадр. трехчлен намножители:

x^2 - 7x + 6 = (x-6)(x-1)   (так как корни по т.Виета 1 и 6)

Знаменатель также разложим на множители и после сокращений получим:

(х-6)(х-1) / (х(х+6))

Методом интервалов найдем знаки этого выражения на всей числовой оси с учетом ОДЗ: х не равен 0;+-6.

    (+)                (-)          (+)           (-)              (+)

(-6)(0)(1)(6)

Судя по заданию, неравенство должно заканчиваться: <0 (или <=0)

В любом случае наибольшее целое число из отрицательных областей равно 5.

ответ: 5

4,4(1 оценок)
Ответ:
Фейдииик
Фейдииик
30.01.2020
1. 3sin^2x – 10sin x + 7 = 0
решаем как квадратное
Sinx = 7/3           Sinx = 1
∅                           x = π/2 + 2πk , k ∈Z
2. 8sin^2x + 10cos x – 1 = 0
решаем как квадратное
Sinx = (-5 +√33)/8                                             Sinx = (-5 -√33)/8
x = (-1)ⁿ arcSin(-5 +√33)/8 + nπ, n ∈Z                     ∅  
3. 4sin^2x + 13sin x cos x + 10cos^2x = 0 |: Сos²x
 4tg²x +13 tgx +10 = 0
решаем как квадратное:
tgx = -10/8                                         tgx = -2
x= arctg(-5/4) + πk , k ∈Z                  x = arctg(-2) + πn , n ∈Z
4. 3 tg x – 3ctg x + 8 = 0 | * tgx
3tg²x -3 +8tgx = 0
решаем как квадратное
tgx = -3                                           tgx = 1/3
x = arctg(-3) + πk , k ∈ Z             x = arctg(1/3) + πn , n ∈Z
5. sin 2x + 4cos^2x = 1
2SinxCosx +4Cos²x = Sin²x + Cos²x
2SinxCosx +4Cos²x - Sin²x - Cos²x= 0
Sin²x - 2SinxCosx -3Cos²x = 0 | : Сos²x
tg²x -2tgx -3 = 0
решаем как квадратное
по т. Виета корни:
tgx = -3                                       tgx = 1
x = arctg(-3) + πk , k∈Z           x = π/4 + πn , n ∈Z
6. 10cos^2x – 9sin 2x = 4cos 2x – 4
10Cos²x -18SinxCosx = 4(1 - 2Cos²x) - 4
10Cos²x -18SinxCosx = 4 - 8Cos²x - 4
10Cos²x -18SinxCosx + 8Cos²x  = 0
5Cos²x -9SinxCosx +4Cos²x = 0| : Сos²x
5tg²x -9tgx +4 = 0
решаем как квадратное
tgx= 1                                   tgx = 0,8
x = π/4 + πk , k ∈Z              x = arctg0,8 + πn , n ∈Z
4,7(81 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ