М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
123123324322221
123123324322221
09.07.2021 03:52 •  Алгебра

A) sin^2x+11cosx+41=0 b)sin^2(2x/7) - 2sin(2x/7) cos(2x/7) - 3cos^2(2x/7) = 0

👇
Ответ:
мартина
мартина
09.07.2021
A) sin^2(x) + 11 - 11sin^2x + 41 = 0
-10sin^2(x) = - 52
sin^2x = 5.2

не попадает под область определения sin(x) = (-1;1)

B)сделаю замену, чтобы меньше было печатать 2x/7 = t
sin2^t - 2sintcost - 3 cos^2t = 0
вынесем за скобку cos^2(t)
cos^2(t) *( sin^2(t)/cos^2(t) - 2sin(t)cos(t) / cos^2t - 3) = 0
cos^2(t) *( tg^2(t)- 2tg(t)- 3) = 0
разбиваем задачу на два случая
1) cos^t = 0
t = Pi/2 + Pi*n     где n принадлежит Z
2x/7 = Pi/2 + Pi*n
x = 7Pi/4 + 7Pi*n/2       где n принадлежит Z

2) ( tg^2(t)- 2tg(t)- 3) = 0
cделаем замену tg(t) = y
y^2 - 2y - 3 = 0
y1 = -1
y2 = 3

tg(t) = -1
t = - arctg(1) + Pi*n
t = -Pi/4 + Pi*n
2x/7 =  -Pi/4 + Pi*n
x = -7*PI/8 + 7Pi*n/2

tg(t) = -3
t = -arctg(3) + Pi*n
2x/7 =  -arctg(3) + Pi*n
x = -7/2 * arctg(3) + 7Pi*n/2
4,5(33 оценок)
Открыть все ответы
Ответ:
диана27th
диана27th
09.07.2021

Перепишем первое уравнение в виде: x + y = -3

Система теперь выглядит так:

 

x + y = -3

x² + y² = 5

Это чисто метод замены переменной. Пусть x + y = a, xy = b.

Выразим x² + y² через a и b.

(x + y)² = x² + 2xy + y², с учётом замены

a² = x² + 2b + y², откуда

x² + y² = a² - 2b.

Идём далее, с учётом замены перепишем уже систему в следующем виде:

 

a = -3                               a = -3                                          a = -3

a² - 2b = 5                       2b = a² - 5 = 9 - 5 = 4               b = 2

 

Возвращаемся к старым переменным, учитывая, что x + y = a, xy = b

 

x + y = -3                       y = -3 - x

xy = 2                             x(-3-x) = 2  (1)

 

(1)-3x - x² = 2

      x² + 3x + 2 = 0

      x1 = -2; x2 = -1

 Приходим к двум вариантам:

x = -2                       или              x = -1

y = -1                                            y = -2

Система решена

 

4,8(25 оценок)
Ответ:
mivaniuk
mivaniuk
09.07.2021
a)
log_{0.5} ( x^{2} -3x)=-2

ОДЗ:
x^2-3x\ \textgreater \ 0

x(x-3)\ \textgreater \ 0
 
    +              -                +
---------(0)----------(3)-------------
///////////                  ////////////////

x ∈ (- ∞ ;0) ∪ (3;+ ∞ )

log_{0.5} ( x^{2} -3x)= log_{0.5} 0.5^{-2}

log_{0.5} ( x^{2} -3x)= log_{0.5} 4

x^{2} -3x= 4

x^{2} -3x-4=0

D=(-3)^2-4*1*(-4)=9+16=25=5^2

x_1= \frac{3+5}{2}=4

x_2= \frac{3-5}{2}=-1

ответ: -1; 4

b)
log^2_{2} (x-2)- log_{2} (x-2)=2

ОДЗ:

x-2\ \textgreater \ 0

x\ \textgreater \ 2

log^2_{2} (x-2)- log_{2} (x-2)-2=0

Замена:  log_{2} (x-2)=t

t^2-t-2=0

D=(-1)^2-4*1*(2)=1+8=9

t_1= \frac{1+3}{2}=2

t_2= \frac{1-3}{2}=-1

log_{2} (x-2)=2   или   log_{2} (x-2)=-1

x-2=4       или       x-2=0.5

x=6         или        x=2.5

ответ:  2,5;  6
 
c)
log_{3} ( x^{2} +2x)\ \textless \ 1

ОДЗ:
x^{2} +2x\ \textgreater \ 0

x(x+2)\ \textgreater \ 0
 
    +              -                +
---------(-2)----------(0)-------------
///////////                  ////////////////

x ∈ (- ∞ ;-2) ∪ (0;+ ∞ )

log_{3} ( x^{2} +2x)\ \textless \ log_{3}3

x^{2} +2x\ \textless \ 3

x^{2} +2x-3\ \textless \ 0

D=2^2-4*1*(-3)=4+12=16

x_1= \frac{-2+4}{2}=1

x_2= \frac{-2-4}{2}=-3

     +                -                  +
----------(-3)-----------(1)--------------
               /////////////////

С учётом ОДЗ получаем

ответ: (-3;-2) ∪ (0;1)

d)
log_{ \frac{1}{3} } (0.1x-5.2)\ \textgreater \ 2

ОДЗ:
0.1x-5.2\ \textgreater \ 0

0.1x\ \textgreater \ 5.2

x\ \textgreater \ 52

log_{ \frac{1}{3} } (0.1x-5.2)\ \textgreater \ log_{ \frac{1}{3} } \frac{1}9}

0.1x-5.2\ \textless \ \frac{1}9}

0.1x\ \textless \ \frac{1}9} +5 \frac{1}{5}

0.1x\ \textless \ \frac{5}{45} +5 \frac{9}{45}

0.1x\ \textless \ 5 \frac{14}{45}

\frac{1}{10} x\ \textless \ \frac{239}{45}

x\ \textless \ \frac{239}{45} *10

x\ \textless \ 53 \frac{1}{9}

С учётом ОДЗ получаем

ответ: (52;53 \frac{1}{9})
4,6(50 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ