Как перевести периодическую дробь в обыкновенную: 1) Считаем количество цифр в периоде десятичной дроби. Обозначаем количество цифр за букву k. У нас k=1. 2) Считаем количество цифр, стоящих после запятой, но до периода десятичной дроби. Обозначаем количество цифр за букву m. У нас m=1. 3) Записываем все цифры после запятой (включая цифры из периода) в виде натурального числа. Обозначаем полученное число буквой a. У нас а=23. 4) Теперь записываем все цифры, стоящие после запятой, но до периода, в виде натурального числа. Обозначаем полученное число буквой b. У нас b=2. 5) Подставляем найденные значения в формулу , где Y — целая часть бесконечной периодической дроби (у нас Y=0), количество девяток равно k, количество нулей равно m.
У меня получилось 4 таких числа - 1236, 1248, 1296 и 1326. Это навскидку, может и еще есть. Очевидно, первая цифра 1. Если все цифры различны, то вторая 2 или 3. Если вторая цифра 2, то третья не меньше 3, а последняя четная. Если третья 3, то число делится на 2 и 3, то есть на 6. Последняя 6. 1236 делится на 2,3 и 6. Если третья 4, то последняя 8. 1248 делится на 2, 4 и 8. Третья не может быть 5,6,7,и 8, по разным причинам. Если третья 9, то последняя 6, 1296 делится на 2, 9 и 6. Если вторая 3, то получается 1326 - четное и делится на 6.
2*3√3n-4*5√3n-3*2√3n
6√3n-20√3n-6√3n
ответ: -20√3n
2) √4*15-3√25*15+6√35-2√49*15
2√15-15√15+6√35-14√15
-27√15+6√35