В решении.
Объяснение:
1. Дана система двух линейных уравнений.
Найдите значение переменной y .
y+15x=2
4y-15x=4 методом сложения
Смысл метода алгебраического сложения в том, чтобы при сложении уравнений одно неизвестное взаимно уничтожилось. То есть, чтобы коэффициенты при неизвестном каком-то были одинаковыми, но с противоположными знаками. Для того, чтобы этого добиться, преобразовывают уравнения, можно умножать обе части уравнения на одно и то же число, делить.
В данной системе ничего преобразовывать не нужно, есть одинаковые коэффициенты при х, с противоположными знаками.
Складываем уравнения:
у+4у+15х-15х=2+4
5у=6
у=6/5
2. Дана система уравнений.
Вычисли значение переменной b.
5a+b=12
−b+a=0 методом сложения
5а+a+b-b=12
6a=12
a=2
Теперь подставляем значение a в любое из двух уравнений системы и вычисляем b:
5a+b=12
b=12-5a
b=12-5*2
b=12-10
b=2
3. Решить систему уравнений:
x+y=−9
x−y=19 методом сложения
х+х+у-у= -9+19
2х=10
х=5
x+y=−9
у= -9-х
у= -9-5
у= -14
Решение системы уравнений (5; -14)
4. Реши методом алгебраического сложения систему уравнений.
2y−3x=−7
2y+x=2
Умножим первое уравнение на -1:
-2у+3х=7
2у+х=2
Складываем уравнения:
-2у+2у+3х+х=7+2
4х=9
х=9/4
х=2,25
Теперь подставляем значение х в любое из двух уравнений системы и вычисляем у:
2y−3x=−7
2у= -7+3*2,25
2у= -0,25
у= -0,25/2
у= -0,125
Решение системы уравнений (2,25; -0,125)
5. Решить систему уравнений алгебраического сложения.
3y+z=0
−z+2y=1
Складываем уравнения:
3у+2у+z-z=0+1
5y=1
y=1/5
y=0,2
Теперь подставляем значение y в любое из двух уравнений системы и вычисляем z:
3y+z=0
z= -3y
z= -3*0,2
z= -0,6
Решение системы уравнений (0,2; -0,6)
6. Решить систему уравнений:
3y+4x=9
4x−2y=0 методом сложения
Умножим первое уравнение на -1:
-3у-4х= -9
4x−2y=0
Складываем уравнения:
-3у-2у-4х+4х= -9+0
-5у= -9
у= -9/-5
у=1,8
Теперь подставляем значение y в любое из двух уравнений системы и вычисляем х:
3y+4x=9
4х=9-3у
4х=9-3*1,8
4х=9-5,4
4х=3,6
х=3,6/4
х=0,9
Решение системы уравнений (0,9; 1,8)
3cos 2x - 22sin x - 15 = 0
3 - 6sin^2 x - 22sin x - 15 = 0
Приводим подобные и делим все на -2
3sin^2 x + 11sin x + 6 = 0
Получили квадратное уравнение относительно sin x
(3sin x + 2)(sin x + 3) = 0
sin x = -2/3; x1 = -arcsin(2/3) + 2pi*k; x2 = pi + arcsin(2/3) + 2pi*k
sin x = -1/3; x3 = -arcsin(1/3) + 2pi*n; x4 = pi + arcsin(1/3) + 2pi*n
2) sin 2x = 2sin x*cos x
19sin 2x + 6cos^2 x - 12 = 0
6cos^2 x + 38sin x*cos x - 12sin^2 x - 12cos^2 x = 0
Приводим подобные и делим все на -2
6sin^2 x - 19sin x*cos x + 3cos^2 x = 0
Делим всё на cos^2 x
6tg^2 x - 19tg x + 3 = 0
Получили квадратное уравнение относительно tg x
(tg x - 3)(6tg x - 1) = 0
tg x = 3; x1 = arctg(3) + pi*k
tg x = 1/6; x = arctg(1/6) + pi*n
3) 9cos x + sin x - 1 = 0
Применим те же формулы двойного аргумента, перейдя к (x/2)
9cos^2(x/2) - 9sin^2(x/2) + 2sin(x/2)*cos(x/2) - sin^2(x/2) - cos^2(x/2) = 0
-10sin^2(x/2) + 2sin(x/2)*cos(x/2) + 8cos^2(x/2) = 0
Делим всё на -2cos^2(x/2)
5tg^2(x/2) - tg(x/2) - 4 = 0
Получили квадратное уравнение относительно tg(x/2)
(tg(x/2) - 1)(5tg(x/2) + 4) = 0
tg(x/2) = 1; x/2 = pi/4 + pi*k; x1 = pi/2 + 2pi*k
tg(x/2) = -4/5 = -0,8; x/2 = -arctg(0,8) + pi*n; x2 = -2arctg(0,8) + 2pi*n