М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
ifddhhx
ifddhhx
16.06.2022 02:42 •  Алгебра

Решите тригонометрические уравнения 1) 3cos2x-22sinx-15=0 2) 19sin2x+6cos²x-12=0 3) 9cosx+sinx-1=0

👇
Ответ:
Ilya1140
Ilya1140
16.06.2022
1) cos 2x = 1 - 2sin^2 x
3cos 2x - 22sin x - 15 = 0
3 - 6sin^2 x - 22sin x - 15 = 0
Приводим подобные и делим все на -2
3sin^2 x + 11sin x + 6 = 0
Получили квадратное уравнение относительно sin x
(3sin x + 2)(sin x + 3) = 0
sin x = -2/3; x1 = -arcsin(2/3) + 2pi*k; x2 = pi + arcsin(2/3) + 2pi*k
sin x = -1/3; x3 = -arcsin(1/3) + 2pi*n; x4 = pi + arcsin(1/3) + 2pi*n

2) sin 2x = 2sin x*cos x
19sin 2x + 6cos^2 x - 12 = 0
6cos^2 x + 38sin x*cos x - 12sin^2 x - 12cos^2 x = 0
Приводим подобные и делим все на -2
6sin^2 x - 19sin x*cos x + 3cos^2 x = 0
Делим всё на cos^2 x
6tg^2 x - 19tg x + 3 = 0
Получили квадратное уравнение относительно tg x
(tg x - 3)(6tg x - 1) = 0
tg x = 3; x1 = arctg(3) + pi*k
tg x = 1/6; x = arctg(1/6) + pi*n

3) 9cos x + sin x - 1 = 0
Применим те же формулы двойного аргумента, перейдя к (x/2)
9cos^2(x/2) - 9sin^2(x/2) + 2sin(x/2)*cos(x/2) - sin^2(x/2) - cos^2(x/2) = 0
-10sin^2(x/2) + 2sin(x/2)*cos(x/2) + 8cos^2(x/2) = 0
Делим всё на -2cos^2(x/2)
5tg^2(x/2) - tg(x/2) - 4 = 0
Получили квадратное уравнение относительно tg(x/2)
(tg(x/2) - 1)(5tg(x/2) + 4) = 0
tg(x/2) = 1; x/2 = pi/4 + pi*k; x1 = pi/2 + 2pi*k
tg(x/2) = -4/5 = -0,8; x/2 = -arctg(0,8) + pi*n; x2 = -2arctg(0,8) + 2pi*n
4,8(57 оценок)
Открыть все ответы
Ответ:
NikolayMakaren
NikolayMakaren
16.06.2022
1) Ключевое слово - 7 одинаковых прямоугольников!
Пусть одна сторона этих прямоугольников x, а другая y.
У одного прямоугольника периметр P = 2(x + y) = 20
x + y = 10; x = 10 - y.
Приставим прямоугольники друг к другу в цепочку сторонами x.
Получим длинный прямоугольник с сторонами x и 7y
P = 2(x + 7y) = 2(10 - y + 7y) = 2(10 + 6y) = 100
10 + 6y = 50
6y = 40; y = 40/6 = 20/3 = 6 2/3; x = 10 - y = 3 1/3 = 10/3
Прямоугольник со сторонами 10/3 и 20/3 имеет периметр 20,
а 7 таких прямоугольников, выстроенных в цепочку, дают прямоугольник с периметром 100.

2) Сумма 100 = 3*33 + 1 содержит 34 хороших слагаемых.
Это и есть максимум.

3) Бред - треугольник не может быть ромбом.
4,4(75 оценок)
Ответ:
Nastyal1324
Nastyal1324
16.06.2022

В решении.

Объяснение:

1. Дана система двух линейных уравнений.

Найдите значение переменной y .

y+15x=2

4y-15x=4    методом сложения

Смысл метода алгебраического сложения в том, чтобы при сложении уравнений одно неизвестное взаимно уничтожилось. То есть, чтобы коэффициенты при неизвестном каком-то были одинаковыми, но с противоположными знаками. Для того, чтобы этого добиться, преобразовывают уравнения, можно умножать обе части уравнения на одно и то же число, делить.

В данной системе ничего преобразовывать не нужно, есть одинаковые коэффициенты при х, с противоположными знаками.

Складываем уравнения:

у+4у+15х-15х=2+4

5у=6

у=6/5

2. Дана система уравнений.

Вычисли значение переменной b.

5a+b=12

−b+a=0   методом сложения

5а+a+b-b=12

6a=12

a=2

Теперь подставляем значение a в любое из двух уравнений системы и вычисляем b:

5a+b=12

b=12-5a

b=12-5*2

b=12-10

b=2

3. Решить систему уравнений:

x+y=−9  

x−y=19   методом сложения

х+х+у-у= -9+19

2х=10

х=5

x+y=−9  

у= -9-х

у= -9-5

у= -14

Решение системы уравнений (5; -14)

4. Реши методом алгебраического сложения систему уравнений.

2y−3x=−7

2y+x=2

Умножим первое уравнение на -1:

-2у+3х=7

2у+х=2

Складываем уравнения:

-2у+2у+3х+х=7+2

4х=9

х=9/4

х=2,25

Теперь подставляем значение х в любое из двух уравнений системы и вычисляем у:

2y−3x=−7

2у= -7+3*2,25

2у= -0,25

у= -0,25/2

у= -0,125

Решение системы уравнений (2,25; -0,125)

5. Решить систему уравнений алгебраического сложения.

3y+z=0

−z+2y=1

Складываем уравнения:

3у+2у+z-z=0+1

5y=1

y=1/5

y=0,2

Теперь подставляем значение y в любое из двух уравнений системы и вычисляем z:

3y+z=0

z= -3y

z= -3*0,2

z= -0,6

Решение системы уравнений (0,2; -0,6)

6. Решить систему уравнений:

3y+4x=9

4x−2y=0   методом сложения

Умножим первое уравнение на -1:

-3у-4х= -9

4x−2y=0

Складываем уравнения:

-3у-2у-4х+4х= -9+0

-5у= -9

у= -9/-5

у=1,8

Теперь подставляем значение y в любое из двух уравнений системы и вычисляем х:

3y+4x=9

4х=9-3у

4х=9-3*1,8

4х=9-5,4

4х=3,6

х=3,6/4

х=0,9

Решение системы уравнений (0,9; 1,8)

4,4(15 оценок)
Это интересно:
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ