Обозначим: x-первое число, y- второе число. 30% от первого числа x· 3/10, 40% от второго числа y·4/10, запишем уравнение: x·3/10+y·4/10=10. Во втором случае первое число увеличили на 10%, оно стало равно 110%, 110% от первого числа x·11/10, второе число уменьшили на 20%, следовательно оно равно: 100%-20%=80%, 80% от второго числа y·8/10, составим уравнение:x·11/10+y·8/10=26. Решим систему с двумя неизвестными: x·3/10+y·4/10=10 ·10 x·11/10+y·8/10=26. ·10
3x+4y=100 ·(-2) 11x+8y=260
-6x-8y=-200 11x+8y= 260, складываем эти уравнения, 5x=60 x=12. найдем значение y. 3x+4y=100 4y=100-3x=100-3·12. 4y=64 y=16 ответ: первое число равно 12, второе равно 16
Y(x)=x²+4, х₀=1, k=4 угловой коэффициент касательной к функции равен значению производной функции в точке касания, т.е. k=y'(x₀) 1) найдем производную: y'(x)=(x²+4)'=2x k=y'(x₀)=y'(1)=2*1=2 - угловой коэффициент касательной к графику функции в точке с абсциссой x₀=1 2) теперь известен угловой коэффициент k=4, но неизвестна точка касания x₀, т.е. y'(x₀)=k 2*x₀=4 x₀=2 чтобы найти ординату точки, подставим x₀ в функцию y(x): y₀=y(x₀)=2²+4=4+4=8 (2;4) - координаты точки, в которой угловой коэффициент касания равен k=4 3) уравнение касательной в общем виде: f(x)=y(x₀)+y'(x₀)*(x-x₀) x₀=1, y'(x₀)=2 - найдено выше под 1) y(x₀)=1²+4=5 подставляем найденные значения в общий вид: f(x)=5+2(x-1)=5+2x-2=2x+3 - уравнение касательной к графику функции в точке с абсциссой x₀=1
27:27 и 27:3 и на 9 тоже делится