М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
YULEMESLEILAA
YULEMESLEILAA
17.07.2022 07:04 •  Алгебра

Решите неравенство x^4-6x^3+11x^2-6x< 0

👇
Ответ:
lelyabolsun
lelyabolsun
17.07.2022
X⁴-6x³+11x²-6x<0
x(x³-6x²+11x-6)<0
Видим, что в x³-6x²+11x-6=0 корнем уравнения является 1. Разделим данный многочлен на (x-1)
(см. вложение)
x(x-1)(x²-5x+6)<0
Рассмотрим x²-5x+6=0
D=5²-4*6=1
x=(5+1)/2=3
x=(5-1)/2=2
x(x-1)(x-2)(x-3)<0
(см. вложение)
x∈(0;1)U(2;3)
Решите неравенство x^4-6x^3+11x^2-6x< 0
Решите неравенство x^4-6x^3+11x^2-6x< 0
4,7(2 оценок)
Открыть все ответы
Ответ:
marina18190
marina18190
17.07.2022

Пусть вся дорога 1 (единица), тогда х время, за которое первая бригада может отремонтировать дорогу, а у время второй бригады. Совместная работа двух бригад 6 ч. Если первая бригада отремонтирует 3/5 дороги, то время затратит (3/5)÷(1/х)=3х/5 ; если вторая бригада отремонтирует оставшуюся часть: 1-3/5=2/5 дороги. то время затратит (2/5)÷(1/у)=2у/5 , и времени они затратят 12 часов. Составим два уравнения:

1/х+1/у=1/6

3х/5+2у/5=12

Выделим х во втором уравнении:

3х/5+2у/5=12

15х+10у=300

3х+2у=60

х=(60-2у)/3

Подставим значение х в первое уравнение:

3/(60-3у)+1/у=1/6

18у+360-12у=60у-2у²

2у²-54у+360=0

у²-27у+180=0

D=9

у₁=12 часов вторая бригада может отремонтировать дорогу самостоятельно.

х₁=(60-2*12)/3=36/3=12 часов первая бригада может отремонтировать дорогу самостоятельно.

у₂=15 часов вторая бригада может отремонтировать дорогу самостоятельно.

х₂=(60-2*15)/3=30/3=10 часов первая бригада может отремонтировать дорогу самостоятельно.

ответ: Или первая за 12 часов и вторая за 12 часов; Или первая за 10 часов и вторая за 15 часов.

4,6(56 оценок)
Ответ:
lerakuznyak
lerakuznyak
17.07.2022

1) у = Sin x cуществует при любом значении х. Значит, область определения х∈(-∞ ;+∞)

Теперь про область значений данной функции. Если вспомнить график (синусоиду) или единичную окружность, то легко увидеть, что для у = Sin x область значений у∈[-1;1]

Но в нашем случае в формуле функции  стоит -3. Это значит, что каждое значение "у" изменили на -3

Стало: у∈[ -4; -2]

2) у =2 Sin x  cуществует при любом значении х. Значит, область определения х∈(-∞ ;+∞)

Теперь про область значений данной функции. Если вспомнить график (синусоиду) , то легко увидеть, что для у = 2Sin x область значений у∈[-2;2].

Но в нашем случае в формуле функции стоит  ещё +1. Это значит, что каждое значение "у"  увеличили на 1. Получим: у∈[ -1; 3]

3) у = Cos 2x  cуществует при любом значении х. Но этот косинус стоит под корнем. А корень существует только тогда, когда подкоренное выражение неотрицательно, т.е.  1 - Cos2x ≥ 0

Теперь надо представить график у = Cos 2x. Эта косинусоида "пляшет" в пределах [-1; 1]

Если от 1 отнимать все значения косинуса, то будут получаться числа ≥ 0

Вывод: х∈(-∞ ; +∞)

Что касается множества значений  у, то арифметический квадратный корень из числа- это неотрицательное число.  

у∈[ 0; +∞)

Объяснение: правильно

4,4(86 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ