N имеет координаты xn;0 NP=√(xn-2)²+(yn-4)²=NK=√(xn-5)²+(yn+1)² по условию yn=0 (xn-2)²+16=(xn-5)²+1 xn²-4xn+4+16=xn²-10xn+25+1 6xn=26-20=6 xn=1 искомая точка N имеет координаты (1;0)
Рейс туда-сюда, это два расстояния между пристанями, т.е. катер проплыл 2А, где А - расстояние между пристанями. Когда катер плывёт по течению, то течение плыть катеру, т.е. к собственной скорости катера добавляется скорость течения, т.е. в одном направлении у катера будет скорость 18+2=20 км/ч. А в другую сторону наоборот: течение мешает плыть катеру, т.е. скорость катера против течения будет: 18-2=16 км/ч. Получается первую половину пути-туда, катер проплыл за такое время: А/20, а вторую половину-обратно катер проплыл вот за какое время: А/16. Полное время пути катера 4,5 часа, т.е. можно составить уравнение относительно времени: А/20 + A/16 = 4,5 Приведём к общему знаменателю: A*16+20*A = 45 16*20 10
Прилагаю таблицу интегралов. Интеграл суммы(разности) равен сумме(разности) интегралов, т.е.: s (3-sin2x)dx=s (3)dx - s (sin2x)dx=3x + C1 - 1/2*s (sin2x)d2x= 1/2 перед интегралов выносим, чтобы под дифференциалом х умножить на 2, т.е. как бы умножаем и делим на одно и то же число, чтобы ничего не изменилось. Делаем это для того, чтобы переменная интегрирования стала такой же, как и аргумент синуса, чтобы его можно было проинтегрировать. =3х+C1-1/2*(-cos(2x))+C2=3x+C1+1/2*cos2x+C2 С1 и С2 - это константы, которые появляются в неопределенном интеграле, их можно объединить в одну, т.е. С1+С2=С. Тогда получим итоговое выражение: 3х+1/2*cos2x+C
NP=√(xn-2)²+(yn-4)²=NK=√(xn-5)²+(yn+1)²
по условию yn=0
(xn-2)²+16=(xn-5)²+1 xn²-4xn+4+16=xn²-10xn+25+1
6xn=26-20=6 xn=1
искомая точка N имеет координаты (1;0)