y = x⁴ - 8x³ + 10x² + 1
Для поиска экстремутов функции нужна первая производная
y' = (x⁴ - 8x³ + 10x² + 1)' = (x⁴)' - (8x³)' + (10x²)' + (1)'
y' = 4x³ -24x² + 20x = 4x(x² - 6x + 5) = 4x(x - 5)(x - 1)
y' = 4x(x - 5)(x - 1) = 0
1) 4x = 0; x₁ = 0; x₁∈[-1; 2]
2) x - 5 = 0; x₂ = 5; x₂∉[-1; 2]
3) x - 1 = 0; x₃ = 1; x₃∈[-1; 2]
Для выбора наибольшего и наименьшего значений функции нужно вычислить значения функции в точках экстремумов и на концах интервала.
y(-1) = (-1)⁴ - 8(-1)³ + 10(-1)² + 1 = 20
y(0) = 0⁴ - 8·0³ + 10·0² + 1 = 1
y(1) = 1⁴ - 8·1³ + 10·1² + 1 = 4
y(2) = 2⁴ - 8·2³ + 10·2² + 1 = -7
ответ: наибольшее значение y(-1) = 20;
наименьшее значение y(2) = -7
d1=2m+n+m-2n=3m-n
|d1|²=(3m-n)(3m-n)=9m²-6mn+n²=9|m|²-6|m||n|cosa+|n|²=9*1-6*1*1*1/2+1=9-3+1=7
d2=a-b
d2=2m+n-m+2n=m+3n
|d2|²=(m+3n(m+3n)=m²+6mn+9n²=|m|²+6|m||n|cosa+9|n|²=1+6*1*1*1/2+9*1=1+3+9=13