Каждый квадратный трехчлен ax 2 + bx+ c может быть разложен на множители первой степени следующим образом. Решим квадратное уравнение: ax 2 + bx+ c = 0 . Если x1 и x2 - корни этого уравнения, то ax 2 + bx+ c = a ( x – x1 ) ( x – x2 ) . Это можно доказать, используя либо формулы корней неприведенного квадратного уравнения, либо теорему Виета. ( Проверьте это П р и м е р . Разложить трехчлен 2x 2 – 4x – 6 на множители первой степени. Р е ш е н и е . Во-первых, решим уравнение: 2x 2 – 4x – 6 = 0. Его корни: x1 = –1 и x2 = 3. Отсюда, 2x 2 – 4x – 6 = 2 ( x + 1 ) ( x – 3 ) . ( Раскройте скобки и проверьте результат! ).
3х² - у = 11 сложим оба, получим
5х² = 20
х² = 4
х= - 2
х = 2 подставим получившиеся х в первое уравнение
2*4 + у = 9
у = 1
ответ. (-2; 1), (2; 1)