№11/(1+v2)+1/(v2+v3)+1/(v3+2)=((v3+2)(v2+v3)+(1+v2)(v3+2)+(v3+v2)(1+v2))/((1+v2)(v2+v3)(v3+2))== (v6+3+2v2+2v3+v3+2+v6+2v2+v3+v6+v2+2)/((v2+v3+2+v6)(v3+2))==(3v6+5v2+4v3+7)/(v6+2v2+3+2v3+2v3+4+3v2+2v6)==(3v6+5v2+4v3+7)/(3v6+5v2+4v3+7)=11/(2-v3)-1/(v3-v2)+1/(v2-1)=((v2-1)(v3--v3)(v2-1)+(2-v3)(v3-v2))/((2-v3)(v3-v2)(v2-1))=(v6-2-v3+v2-2v2+2+v6-v3+2v3-2v2-3+v6)/((2v3-2v2-3+v6)(v2-1))==(3v6-3v2-3)/(2v6-2v3-4+2v2-3v2+3+2v3-v6))=3(v6-v2-1)/(v6-v2-1)=3#2я понял запись так : v(7+4v3+v7+4v3)=v(7+v7+8v3)v(8+2v7-v8-2v7)=v(8-v8)
Объяснение:
1 . a ) y' = 2*4x³ + 1/9 *3x² - 1/4 *2x - 8*1 + 0 = 8x³ + 1/3 x²- 1/2 x - 8 ;
б ) у' = (xcosx )' = 1*cosx - xsinx = cosx - xsinx ;
в ) y' = [ x²/( x - 1 )]' = [ 2x( x - 1 ) - x² * 1 ]/ ( x - 1 )² = (x² - 2x )/( x - 1 )² .
2 . S = ∫₃⁴ x²dx = x³/3│₃⁴ = 1/3 ( 4³ - 3³) = 1/3 ( 64 - 27) = 1/3 *37 = = 12 1/3 (кв.од.)
3 . y = f(x) = x⁵ + 2x ;
F(x) = x⁶/6 + 2x²/2 + C = 1/6 x⁶ + x² + C ; F(x) = 1/6 x⁶ + x² + C .