Отметим на числовой прямой точки, при делении на 12 остаток 5, красным карандашом, а точки, при делении на 18 остаток 13-синим. каково будет наименьшее расстояние между красной и синей точкой?
Отметим на числовой прямой точки, дающие при делении на 12 остаток 5, красным карандашом, а точки, дающие при делении на 18 остаток 13-синим. Каково будет наименьшее расстояние между красной и синей точкой?
Очевидно : n₁ =12q₁ + 5 ( отмечены красным карандашом); n₂ =18q₂ + 13 (отмечены синим карандашом ) . Расстояние между этими точками будет: d=| n₁ - n₂ | = |12q₁ + 5 -( 18q₂ + 13) | = | 6(2q₁ -3q₂) - 8 | . Значение выражения (2q₁ -3q₂) должна быть не отрицательной (d ≥0) если : 2q₁ -3q₂ =0 ⇒ d =8 ; --- 2q₁ -3q₂ =1 ⇒ d =2 ; --- 2q₁ -3q₂ =2 ⇒ d =4 ; 2q₁ -3q₂ =3 ⇒ d =10 ; и т.д. расстояние увеличивается. Получается d =dmin=2 , если уравнение 2q₁ -3q₂ =1 будет иметь целочисленное решение и оно имеет. Действительно: 2q₁ -3q₂ =1 ⇔2q₁ =3q₂+1 ⇔q₁ =q₂ +(q₂+1)/2 , замена (q₂+1)/2 =t ∈ Z ⇒ q₂ =2t -1 и q₁ =q₂ +(q₂+1)/2= 2t -1 +t =3t -1. {q₁ =3t - 1 ; q₂ =2t -1 . Соответственно : { n₁ =12q₁ + 5 =36t -7 ; n₂ =18q₂ + 13 =36t -5 ; t ∈Z. Бесконечно множество точек : например: t=-1⇒n₁ = - 43 ; n₂ = - 41 ; t=0 ⇒n₁ = -7 ; n₂ = - 5 ; t=1 ⇒n₁ = 29 ; n₂ = 31
ответ : d min =2 .
* * * между точками n₁ =36t -7 и n₂ =36t -5 ; t ∈Z * * *
Может быть НЕ ВЕРНО? просто тут все верны кроме 4, потому что «а» и так отрицательное, а если перед ним поставить -, то оно станет положительным => больше нуля.
1 верно, потому что отрицательное число + отрицательное число будет давать отрицательное => оно будет меньше нуля
2 верно, потому что b=примерно -0,5 => -0,5-1=-1,5 что больше -2 и -1,5 меньше -1
3 тоже верно, т.к. а=примерно -2,5 => а^2=6,25(число положительное), но его умножают на отрицательно (-1,5) => получится -9,375(число отрицательное), что меньше нуля