Чтобы найти корни, необходимо приравнять выражение к нулю. Произведение равно нулю, когда один из множителей равен нулю. Таким образом: (х-5)*(х+4)=0 x=5 и x=-4 Далее чертим координатную прямую х и отмечаем на ней получившиеся корни (светлыми/выколотыми точками). Расставляем знаки в промежутках: + - + (-4)(5)>x Так как знак в исходном неравенстве был "<" (меньше), то выбираем тот промежуток, где значения функции отрицательны (там, где знак минус на координатной прямой), то бишь: х∈(-4;5). Получившееся выражение можно записать 2-мя х∈(-4;5) или -4<x<5 В ответе записывают один из получившихся вариантов.
1) Cтроишь данный угол и данный отрезок. Переходишь к данному отрезку. Делишь его пополам с циркуля. Потом делишь половину пополам. Получилась 1/4 отрезка. Берёшь другую часть (эта часть будет равна 3/4 данного отрезка). С циркуля отмеряешь радиус, равный 3/4 данного отрезка. Переходишь к углу. Строишь окружность с центром в вершине угла. Любая точка, лежащая на этой окружности, будет равноудалена от вершины угла на расстояние, равное 3/4 данного отрезка.
2) 11°15' = (90/8)°. Строишь прямой угол. Затем строишь биссектрису прямого угла. Получается угол в 45°. Строишь биссектрису угла в 45°. Получается угол в 22°30'. Строишь биссектрису угла в 22°30'. Получается угол в 11°15'. Задача заключается в том, что нужно построить 3 биссектрисы)
Подставим исходные данные и посчитаем: