Испытание состоит в том, что два раза подряд бросают игральный кубик.
Число исходов испытания
n=6·6=36
Результаты можно изобразить в виде таблицы:
( см. рис.1)
Первая цифра -число очков, выпавшее на первом кубике,
вторая цифра - число очков, выпавшее на первом кубике.
Получаем 36 двузначных чисел:
от 11 до 16; от 21 до 26; ... от 61 до 66.
Событие A-"результатом двух последовательных бросков игрального кубика будет число, кратное трем"
m=12 ( cм. рис. 2)
это двузначные числа:
12;15; 21;24;33;36;42;45;51;54;63;66
По формуле классической вероятности
p(A)=m/n=12/36=1/3
Объяснение:
Так как по условию нельзя использовать формулу корней квадратного уравнения (тоесть решать через дискриминант), то решим уравнения через теорему Виета.
а) х²– 3х + 2 = 0
Данное уравнение приведенное, так как коэффициент при х² равен 1.
По теореме Виета для приведённого уравнения (формула х²+bx+c=0) :
Система:
х1+х2=–b
x1*x2=c
В данном случае у нас:
Система:
х1+х2=–(–3)
х1*х2=2
Система:
х1+х2=3
х1*х2=2
Тогда х1=2; х2=1
ответ: х1=2; х2=1
б) х² + 7х + 10 = 0.
По теореме Виета для приведенного уравнения:
Система:
х1+х2=–7
х1*х2=10
Тогда х1=–2; х2=–5
ответ: х1=–2; х2=–5