1) Находим первую производную функции: y' = 2x+1 Приравниваем ее к нулю: 2x+1 = 0 x1 = -1/2 Вычисляем значения функции f(-1/2) = 3/4 Используем достаточное условие экстремума функции одной переменной. Найдем вторую производную: y'' = 2 Вычисляем: y''(-1/2) = 2>0 - значит точка x = -1/2 точка минимума функции.
2) Находим первую производную функции: y' = e^x/x-e^x/x^2 или y' = ((x-1)•e^x)/x^2 Приравниваем ее к нулю: ((x-1)•e^x)/x^2 = 0 x1 = 1 Вычисляем значения функции f(1) = e Используем достаточное условие экстремума функции одной переменной. Найдем вторую производную: y'' = e^x/x-2e^x/x^2+2e^x/x^3 или y'' = ((x^2-2x+2)•e^x)/x^3 Вычисляем: y''(1) = e>0 - значит точка x = 1 точка минимума функции.
y²=t; t≥0
6t²-5t-6=0
D=25-4*6*(-6)=25+144=169=13²
x1=(5+13)/12=18/12=1.5
x2=(5-13)=-8/12=-2/3(не удовл. усл. t≥0)
y²=1.5
y=+-√1.5
ответ: +-√1,5