а) y=(x-2) в 4 степени
1)Четная
2)Определена на всей области определения
3)Вершина в точке (2;0)
4)Ветви направлены вверх.
5)До x<2 убывает.
6)При x>4 возрастает.
б)0.5sinx+2
1) Определена на всей области определения
2) Нечетная
3) Периодическая
4) Возрастает и убывает
5) Знакопостоянна на промежутках
6) Непрерывна
7) График называеться синусойдой
в)y=0.5cosx+2
1)Определена на всей области определения
2)Четная
3)Периодическая
4)Область значений отрезок [ 1,5; 2,5];
5)Убывает на промежутках [KeZ; п+2пk] и возрастает на промежутках [п+2пk;KeZ]
Г)y=-(x+2)в 4 степени.
1)Определена на всей области определения
2) Вершина в точке (-2;0)
3)Возростает (-бесконечности;-2);
4)Убывает (-2;+бесконечности);
5)Ветви направлены в низ
6) Область значений (0;-бесконечности)
7) Ость оссимптот: x=-2
8)Наибольшее значение при y=0; x=-2
9) Наименьшего значения не существует
Дана функция y= (x²-1)(x+1) = х³ + х² - х - 1.
Производная равна y' = 3x² + 2x - 1.
Приравниваем её нулю: 3x² + 2x - 1 = 0.
Д = 4 +12 = 16, х1,2 = (-2 +-4)/6 = (1/3) и -1.
В заданный промежуток попадает критическая точка х = -1.
Находим знаки производной левее и правее этой точки.
х = -2 -1 0
y' = 7 0 -1.
Переход от + к - это точка максимума.
Значение функции в этой точке у = 0.
Находим значения функции на концах заданного промежутка.
х = -2, у = -3,
х = 0, у = -1.
Минимум на заданном промежутке в точке х = -2, у = -3.
6^7*7^8 / 42^7
Начнём со знаменателя:
42 состоит из множителей 6*7, а так как 42 в степени 7, то можно записать:
(6*7)^7 - из свойства степеней, это число можно записать: 6^7*7^7
Отсюда, всё вышеуказанное выражение будет выглядеть так:
6^7*7^8/(6^7*7^7)
Из свойства степеней следует, что при делении чисел с одинаковыми основаниями из степени числителя отнимается степень знаменателя, то есть:
6^(7-7)*7^(8-7)=6^0*7^1
6 в нулевой степени, есть число 1
7 в степени 1, есть число 7
Следовательно:
6^0*7^1=1*7=7
ответ: 7