task/30199707 решить неравенства:
1. 5²ˣ - 2²ˣ - 5²ˣ⁻¹- 2²ˣ⁺² ≥ 0 ⇔ 5²ˣ⁻¹(5-1) -2²ˣ(1+2²) ≥ 0 ⇔4*5²ˣ⁻¹ ≥ 5* 2²ˣ ⇔ 2²*5²ˣ⁻¹ ≥ 5*2²ˣ || : 5*2² || ⇔ 5²ˣ⁻² ≥ 2²ˣ⁻² ⇔ (5/2)²ˣ⁻² ≥ 1 ⇔
(5/2)²ˣ⁻² ≥ (5/2)⁰ , т.к. 5/2 > 1 ,то ⇔ 2x -2 ≥ 0 ⇔ x ≥ 1
ответ : x ∈ [ 1 ; +∞) .
2. √7²ˣ⁺⁶-√49ˣ⁺²-2ˣ⁺⁵+2*2²⁺ˣ > 0 ⇔(√7²)ˣ⁺³-(√7²)ˣ⁺²-2ˣ⁺²⁺³ +2*2ˣ⁺² >0 ⇔
7ˣ⁺³ -7ˣ⁺² - 2ˣ⁺²⁺³ +2*2ˣ⁺² >0 ⇔ 7ˣ⁺²(7 -1) -2ˣ⁺²(2³ -2) > 0 ⇔
6* 7ˣ⁺²> (8 -2)*2ˣ⁺³ || :6 || ⇔7ˣ⁺² >2ˣ⁺²⇔(7/2)ˣ⁺² > 1⇔(7/2)ˣ⁺² > (7/2)⁰ ⇔
x+2 > 0 ⇔ x > -2. ответ : x ∈ ( -2 ; +∞) .
Даны точки M1(3,−1,−3) и M2(6,−3,−6) и плоскость −4x+y+z−6=0 .
Направляющий вектор р прямой М1М2 равен: р = (3; -2; -3).
Нормальный вектор плоскости равен n = (-4; 1; 1).
Теперь находим координаты нормального вектора N искомой плоскости β как векторное произведение векторов р и n.
x y z x y
3 -2 -3 3 -2
-4 1 1 -4 1 =
= -2x + 12y + 3z - 3y + 3x - 8z = x + 9y - 5z. N = (1; 9; -5).
На прямой Р берём точку М1(3; -1; -3).
Уравнение плоскости, проходящей через точку М1
(3, -1, -3) и имеющей нормальный вектор N = (1; 9; -5) имеет вид:
1(x - 3) + 9(y + 1) - 5(z + 3) = 0. Раскроем скобки и приведём подобные:
β = x + 9y - 5z - 9 = 0.
ответ: 4