М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
ydaschamp
ydaschamp
08.03.2022 04:31 •  Алгебра

Найдите значение аргумента, при котором значение функции y=-12/x равно -3.

👇
Ответ:
киса822
киса822
08.03.2022
-12/x=-3
x=-12/(-3)
x=4
4,6(34 оценок)
Ответ:
Амон11111
Амон11111
08.03.2022
Решение
y=-12/x , y = - 3
- 12/x = - 3
3x = 12
x =  4
4,8(33 оценок)
Открыть все ответы
Ответ:
suv1612
suv1612
08.03.2022
1)  a5  =  2*5  - 5²  = 10 - 25  = -15  (ответ 1)      ) 2)  а6 = 2 + (6 - 1)*(-3)  = 2 - 15 = -13  (ответ 3)      ) 3)  d = a6 -  a2  / 4  =  14-4  /2 = 2,5    (ответ 1)      ) 4) s10 =  ( 2*2 + 9*4) / 2  *  10  =  200    (ответ 4)      ) повыш.уровень. 1)  прогрессия убывающая,  с разностью d=  - 0,2   первый член равен 3,    посчитаем, каким по счету будет член, равный нулю. обозначим его аn,  аn=0.       3 : 0,2 = 15,    тогда по формуле    аn  = а1 + (n - 1)*d    найдем n: 0 = 3 +  15*(- 0,2) 0 = 3 +  (16  - 1)*(- 0,2) значит  а16 равен нулю, значит в последовательности 15 положительных членов. 2)  а3 = 10  =>   10 = a1 + 2d              а7 = 10  =>   40 = a1 + 6d          получили систему.       из второго вычтем первое уравнение,  получим:                           30  = 4d    =>     d = 7,5                             a1 = 10 -  2d  =    10 - 15  =  -5         тогда      а5=  a1 + 4d    =   -5 + 4*7,5 = 25 3)   если рассматривать множество натуральных чисел как арифм.прогрессию с первым членом a1 = 1  и разностью  d = 1,  то   сводится к нахождению разности  s100  -  s39, s100  =  (1+100) /2  * 100  = 5050 s39  =  (1+39) /2  * 39  = 780     s100  -  s39 = 5050 - 780  = 4270 4)  d = а8 - а4 / 4  =  20 - 8  /4 = 12/4    =  3 тогда по формуле  аn  = а1 + (n - 1)*d  найдем чему равен первый член:   а4  = а1 + (4 - 1)*d   8 =  а1  + 3*3     а1  =  -1     тогда 16-й  член будет равен:   а16  = а1 + (16 - 1)*d  = -1 + 15*3 = 44 т.о. действительно такая ар.прогрессия существует и формула общего члена такая:     аn  = -1 + 3(n - 1) =  -1 + 3n - 3  =   3n - 4 аn  =  3n - 4 5)  аn  =  3n - 1       а1  =  3 - 1  = 2       а2  =  6 - 1  = 5       d = а2 - а1  = 5-2 = 3 s  = s54  -  s13  = 4401  -  260  =  4141         s54  = (2*2 + 53*3) /2  *  54  = (4 + 159) /2  *  54  = 163 * 54 /2    =  4401         s13  = (2*2 + 12*3) /2  *  13  = (4 + 36) /2  *  13  = 20 *  13  = 260   ответ:   сумма членов прогрессии  с 14  по 54  включительно равна  4141.
4,7(74 оценок)
Ответ:
nn814921
nn814921
08.03.2022
1) y=sin x, y=cos x, x=-5π/4, x=π/4.
Заданный отрезок графиками функций разбивается на 2 участка: левая часть - от заданного предела x=-5π/4 до точки встречи графиков, где график функции синуса выше графика косинуса.
Направо от этой точки график синуса выше графика косинуса.
Это определяет площадь как сумма интегралов разностей функций.
Точка встречи - это значение (-π+(π/4)) = -3π/4.
S= \int\limits^{- \frac{3 \pi }{4} }_{- \frac{5 \pi }{4} } {(sin(x)-cos(x))} \, dx + \int\limits^{- \frac{ \pi }{4} }_{- \frac{3 \pi }{4} } {(cos(x)-sin(x))} \, dx.
Значения аргумента в заданных пределах:
-1.25π =  -3.92699,
-0.75π =  -2.35619,
 0.25π =  0.785398.
Значения функции синуса в заданных пределах:
0.707107,    -0.70711,   0.707107. (это +-√2/2)
Значения функции косинуса в заданных пределах:
-0.70711,    -0.70711,    0.707107.  (это +-√2/2)
Значения функции косинуса в заданных пределах:
Площадь равна  1.414214 + 2.828427 = 4.242641 = 3√2.

2) y=-x^2-2x+4, y=-x^2+4x+1, y=5.
Заданный отрезок графиками функций разбивается на 2 участка, граничные точки которых надо определить.
Средняя точка - равенство функций y=-x^2-2x+4, y=-x^2+4x+1.
-x^2 - 2x + 4 = -x^2 + 4x + 1,
6х = 3,
х = 3/6 = 1/2.
Левая точка - равенство y=-x^2-2x+4, y=5
-x^2 - 2x + 4 = 5.
-x^2 - 2x -1 = 0.
Квадратное уравнение, решаем относительно x: Ищем дискриминант:
D=(-2)^2-4*(-1)*(-1)=4-4*(-1)*(-1)=4-(-4)*(-1)=4-(-4*(-1))=4-(-(-4))=4-4=0; Дискриминант равен 0, уравнение имеет 1 корень:
x=-(-2/(2*(-1)))=-(-2/(-2))=-(-(-2/2))=-(-(-1))=-1. 
Правая точка - равенство y=-x^2+4x+1, y=5.
-x^2 + 4x + 1 = 5.
-x^2 + 4x - 4 = 0.
Квадратное уравнение, решаем относительно x: Ищем дискриминант:
D=4^2-4*(-1)*(-4)=16-4*(-1)*(-4)=16-(-4)*(-4)=16-(-4*(-4))=16-(-(-4*4))=16-(-(-16))=16-16=0; Дискриминант равен 0, уравнение имеет 1 корень:
x=-4/(2*(-1))=-4/(-2)=-(-4/2)=-(-2)=2. Линия у = 5 находится выше парабол.
Площадь равна:
S= \int\limits^{ \frac{1}{2} }_{-1} {(x^2+2x+1)} \, dx + \int\limits^2_{ \frac{1}{2} } {(x^2-4x+4)} \, dx = \frac{x^3}{3}+ \frac{2x^2}{2}+x|_{-1}^{ \frac{1}{2} }+ \frac{x^3}{3}- \frac{4x^2}{2}+4x|_{ \frac{1}{2} }^2= \frac{9}{4}=2,25.
4,4(6 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ