Объяснение:
Выражаем из верхнего уравнения переменную "у":
Подставляем полученное выражение в нижнее уравнение вместо "у":
Раскрываем квадрат разности двух выражений, пользуясь следующей формулой:
Приведём подобные слагаемые. Для этого вынесем общий множитель за скобки:
Выполним сложение в скобке и перенесём слагаемое 13 со знаком минус в левую часть уравнения:
Выполним вычитание:
Разделив все части нижнего уравнения на 6, получим:
Теперь разделим все части нижнего уравнения на 2 для того, чтобы получить приведённое квадратное уравнение:
Решаем нижнее уравнение по теореме Виета. Согласно ей, сумма корней приведённого квадратного уравнения равна коэффициенту при "х", взятому с противоположным знаком, а их произведение — свободному члену:
Минус перед скобкой и минус после скобки дают плюс:
Корнями этой системы являются числа 1/2 и 2.
Мы нашли два значения переменной "х". Теперь подставим каждое из них в верхнее уравнение:
Мы получили две пары корней:
Они являются решениями системы.
Будем искать уравнение касательной в виде y-y0=k*(x-x0), где x0 и y0 - неизвестные пока координаты точки касания, k - угловой коэффициент касательной. Но так как k=tg(α), а по условию α=135°, то k=tg(135°)=-1. Теперь уравнение касательной можно записать в виде y-y0=-1*(x-x0). А так как точка касания принадлежит графику функции, то справедливо уравнение y0=5*x0²-2*x0. С другой стороны, k=y'(x0). Производная y'(x)=10*x-2, отсюда k=10*x0-2=-1, или 10*x0=1. Получена система из двух уравнений:
y0=5*x0²-2*x0
10*x0=1
Решая её, находим x0=0,1 и y0=-0,15. Тогда уравнение касательной таково: x-0,1=-1*(y+0,15), или 20*x-2=-20*y-3, или 20*x+20*y+1=0.
ответ: x0=0,1.
х2-4х+4+24-4-12х-9х2=0
-8х2-16х+24=0
Д=256+768=1024
х1=16+32/-16=-3
х2=16-32/16=1
х2+4х+4-43+6х=0
х2+10х-39=0
Д=100+156=256
х1=-10+16/2=3
х2=-10-16/2=-13
4х2-8х+4-12х-3=0
4х2-20х+1
Д=400-16=384
х1=20+-/384/8
х2=20- -/384/8
4х2 - 4х в квадрате