М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
gehegeghegge
gehegeghegge
28.11.2022 05:13 •  Алгебра

Найдите корни уравнения: а) 6х в квадрате-7х+2=0 б) 8х в квадрате+10х-3=0 в) 9х в квадрате -12х+4=0 г) 20х в квадрате+16х+3=0 д) х в квадрате - 2х-2=0 е)4х в квадрате-4х-7=0 ж) х в квадрате +6х+4=0 з) х в квадрате + 2х -11=0 заранее !

👇
Ответ:
DashaYazikova9
DashaYazikova9
28.11.2022
А) 6х²-7х+2=0
найдем дискриминант квадратного уравнения:
D=b²-4ac=(-7)²-4•6•2=49-48=1
т.к. дискриминант >0, то квадратное уравнение имеет два действительных корня:
х1=(-b-√D)/2a=(7-√1)/(2•6)=(7-1)/12=6/12=0,5
x2=(7+√1)/2•6=(7+1)/12=8/12=2/3=0,6666

б) 8x²+10x-3=0
D=10²-4•8•(-3)=100+96=196
x1=(-10-√196)/(2•8)=(-10-14)/16=-24/16=-1,5
x2=(-10+√196)/(2•8)=(-10+14)/16=4/16=0,25

в) 9x²-12x+4=0
D=(-12)²-4•9•4=144-144=0
т.к. дискриминант равен 0, то уравнение имеет один корень
х=-b/(2•a)=12/(2•9)=2/3=0,6666

г) 20x²+16x+3=0
D=16²-4•20•3=256-240=16
x1=(-16-√16)/(2•20)=(-16-4)/40=-0,5
x2=(-16+√16)/(2•20)=-12/40=-0,3

Д) x²-2x-2=0
D=(-2)²-4•1•(-2)=4+8=12
x1=(2-√12)/2•1=1-√3≈-0,732
x2=(2+√12)/2•1=1+√3≈2,732

е) 4x²-4x-7=0
D=(-4)²-4•4•(-7)=16+112=128
x1=(4-√128)/2•4=0,5-√2≈-0,914
x2=(4+√128)/2•4=0,5+√2≈1,914

ж) x²+6x+4=0
D=6²-4•1•4=36-16=20
x1=(-6-√20)/2•1=-3-√5≈-5,236
x2=(-6+√20)/2•1=-3+√5≈-0,763

з) x²+2x-11=0
D=2²-4•1•(-11)=4+44=48
x1=(-2-√48)/2•1=-1-2√3≈-4,461
x2=(-2+√48)/2•1=-1+√3≈2,464
4,8(46 оценок)
Открыть все ответы
Ответ:
REIIKA
REIIKA
28.11.2022
Поскольку модуль слева это модуль от суммы положительного числа 3 и модуля, то большой модуль положителен и раскрывается как уравнение вида abs(x+2)+3=4 и решается как abs(x+2)=1 и x+2=1 или x-2=-1.   а если бы у тебя было бы уравнение abs(abs(x+2)-3)=4, то пришлось бы рассмотреть уравнения abs(x+2)=4 и abs(x+2)=-4 только когда у тебя по модулем находится сумма положительного числа и модуля от выражения, содержащего переменную x ты рассматриваешь уравнение в варианте (заменяешь скобки модуля на обычные скобки) поскольку при сложении положительного числа и модуля какого-либо выражения их сумма не может быть отрицательна.
4,8(54 оценок)
Ответ:
mrmrheik
mrmrheik
28.11.2022
y= \dfrac{2.5|x|-1}{|x|-2.5x^2} = \dfrac{2.5|x|-1}{-|x|(2.5|x|-1)}=- \dfrac{1}{|x|}

Строим гиперболу y=-\dfrac{1}{x} и затем верхнюю часть графика отобразить в нижнюю(отрицательную часть)

Область определения: \displaystyle \left \{ {{|x|\ne0} \atop {2.5|x|-1\ne0}} \right. ~~~\Rightarrow~~~~ \left \{ {{x\ne 0} \atop {x\ne \pm0.4}} \right.

Подставим у=кх в упрощенную функцию.

kx=- \dfrac{1}{|x|}              (*)

Очевидно, что при k=0 уравнение   (*) решений не будет иметь.

1) Если x>0, то kx^2=-1 и это уравнение решений не имеет при k>0(так как левая часть всегда положительно).

2) Если x<0, то kx^2=1 и при k<0 это уравнение решений не имеет.

Если объединить 1) и 2) случаи, то уравнение будет иметь хотя бы один корень.

Подставим теперь x=\pm0.4, имеем

k\cdot (-0.4)=- \dfrac{1}{0.4} \\ \\ k=6.25                                         k\cdot 0.4=- \dfrac{1}{0.4} \\ \\ k=-6.25

Итак, при k=0 и k=±6.25 графики не будут иметь общих точек

Постройте график функции у=2,5|х|-1/|х|-2,5х^2 и определитель,при каких значениях k прямая у=kx не и
4,4(8 оценок)
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ