xy + x - y = 7 xy + x - y = 7 Замена: xy = а; x - y = b
x²y - xy² = 6 xy(x - y) = 6
a + b = 7
ab = 6 Систему решаем, применив т. Виета.
a₁ = 1 или a₂ = 6
b₁ = 6 b₂ = 1
Обратная замена:
1) xy = 1 или 2) xy = 6
x - y = 6 x - y = 1
Решаем каждую систему совокупности:
1) xy = 1 (6 + y)y = 1; 6y + y² = 1; y² + 6y - 1 = 0;
x = 6 + y y₁ = -3 + √10; y₂ = -3 - √10
x₁ = 3 + √10; x₂ = 3 - √10
(3 + √10; -3 + √10), (3 - √10; -3 - √10).
2) xy = 6 (y + 1)y = 6; y² + y - 6 = 0;
x = y + 1 y₁ = -3; y₂ = 2
x₁ = -2; x₂ = 3
(-3; -2), (3; 2)
ответ: (3 + √10; -3 + √10), (3 - √10; -3 - √10), (-3; -2), (3; 2).
ответ: (0; -6)
Объяснение:
1)Найдём абсциссы точек пересечения графика с осью абсцисс:
x⁴+x²-2=0
пусть х²=у≥0 ⇒ у²+у-2=0
D=1+8=9>0
y₁= (-1+3)/2=1
y₂=(-1-3)/2=-2<0 (не удовл условию у≥0)
Если у=1, то х²=1 ⇒ х₁=1, х₂=-1 (абсциссы точек пересечения графика с осью абсцисс)
2)Найдём уравнение касательной к кривой y=x⁴+x²-2 в точке с абсциссой x₀₁ = 1.
Запишем уравнения касательной в общем виде:
y = y₀ + y'(x₀)(x - x₀)
По условию задачи x₀₁= 1, тогда y₀ = 1⁴+1²-2=0
Теперь найдем производную:
y' = (x⁴+x²-2)' = 4х³+2x
следовательно: y'(x₀)=у'(1) = 4·1³+2·1 = 6
Тогда уравнение касательной в точке с абсциссой х₀₁=1:
y=0+6·(x-1)=6х-6 или y = 6·x-6 (уравнение первой касательной)
3) Найдём уравнение касательной к кривой y=x⁴+x²-2 в точке с абсциссой x₀₂ = -1.
По условию задачи x₀₂= - 1, тогда y₀=y₀₂ = 1⁴+1²-2=0
y' = 4х³+2x
следовательно: y'(x₀₂)=у'(-1) = 4·(-1)³+2·(-1) = -6
Тогда уравнение касательной в точке с абсциссой х₀₂=-1:
y=0-6·(x+1)=-6х-6 или y = -6·x-6 (уравнение второй касательной)
4)Найдём точку пересечения этих касательных:
6х-6= -6х-6
12х=0
х=0 ⇒ у=6·0-6= -6 ⇒ (0; -6) точка пересечения этих касательных
1) НОД(4;3)=1 и с=1 делится на 1- значит уравнение имеет решения в целых числах.
2) Путем подбора находим частное решение, например х0=1 и у0=1 (1;1)
Значит, выполняется равенство 4*1-3*1=1 (2).
3) Для того, чтобы записать общее решение, нужно из уравнения (1) отнять равенство(2). Получаем:
4х-3у=1
4*1-3*1=1
---------------
4(х-1)-3(у-1)=0;
4(х-1)=3(у-1);
Отсюда х-1=3(у-1)/4. Из полученного равенства видно, что число (х-1) будет целым, если число (у-1) будет делиться на 4, т.е. у-1=4n, где n - любое целое число, значит у=4n+1.
Аналогично определяем для х.
у-1=4(х-1)/3. Из полученного равенства видно, что число (у-1) будет целым, если число (х-1) будет делиться на 3, т.е. х-1=3n, где n - любое целое число, значит х=3n+1.
Значит, все целые решения данного уравнения (1) можно записать в виде: